AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Realizing high thermoelectric performance via selective resonant doping in oxyselenide BiCuSeO

Yue-Xing Chen1Wenning Qin1Adil Mansoor2Adeel Abbas1Fu Li1Guang-xing Liang1Ping Fan1Muhammad Usman Muzaffar3Bushra Jabar1( )Zhen-hua Ge4Zhuang-hao Zheng1( )
F1 Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale (HFNL), and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Show Author Information

Graphical Abstract

Dual doping establishes band-transport connections to optimize the electrical transport channels in the BiCuSeO system. As a result, both an improved ZTmax = 0.87 (at ~873 K) and a high ZTave = 0.5 (at 300–873 K) areachieved.

Abstract

Tuning the charge carrier concentration is imperative to optimize the thermoelectric (TE) performance of a material. For BiCuSeO based oxyselenides, doping efforts have been limited to optimizing the carrier concentration. In the present work, dual-doping of In and Pb at Bi site is introduced for p-type BiCuSeO to realize the electric transport channels with intricate band characteristics to improve the power factor (PF). Herein, the impurity resonant state is realized via doping of resonant dopant In over Pb, where Pb comes forward to optimize the Fermi energy in the dual-doped BiCuSeO system to divulge the significance of complex electronic structure. The manifold roles of dual-doping are used to adjust the elevation of the PF due to the significant enhancement in electrical properties. Thus, the combined experimental and theoretical study shows that the In/Pb dual doping at Bi sites gently reduces bandgap, introduces resonant doping states with shifting down the Fermi level into valence band (VB) with a larger density of state, and thus causes to increase the carrier concentration and effective mass (m*), which are favorable to enhance the electronic transport significantly. As a result, both improved ZTmax = 0.87 (at 873 K) and high ZTave = 0.5 (at 300–873 K) are realized for InyBi(1−x)−yPbxCuSeO (where x = 0.06 and y = 0.04) system. The obtained results successfully demonstrate the effectiveness of the selective dual doping with resonant dopant inducing band manipulation and carrier engineering that can unlock new prospects to develop high TE materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4810_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Bahrami, A.; Schierning, G.; Nielsch, K. Waste recycling in thermoelectric materials. Adv. Energy Mater. 2020, 10, 1904159.

[2]

Mao, J.; Chen, G.; Ren, Z. F. Thermoelectric cooling materials. Nat. Mater. 2021, 20, 454–461.

[3]

Yan, Q. Y.; Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 2022, 21, 503–513.

[4]

Ren, G. K.; Wang, S. Y.; Zhou, Z. F.; Li, X.; Yang, J.; Zhang, W. Q.; Lin, Y. H.; Yang, J.; Nan, C. W. Complex electronic structure and compositing effect in high performance thermoelectric BiCuSeO. Nat. Commun. 2019, 10, 2814.

[5]

Zhao, L. D.; He, J. Q.; Berardan, D.; Lin, Y. H.; Li, J. F.; Nan, C. W.; Dragoe, N. BiCuSeO oxyselenides: NEW promising thermoelectric materials. Energy Environ. Sci. 2014, 7, 2900–2924.

[6]

Li, F.; Li, J. F.; Zhao, L. D.; Xiang, K.; Liu, Y.; Zhang, B. P.; Lin, Y. H.; Nan, C. W.; Zhu, H. M. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ. Sci. 2012, 5, 7188–7195.

[7]

Jabar, B.; Mansoor, A.; Chen, Y. X.; Jamil, S.; Chen, S.; Liang, G. X.; Li, F.; Fan, P.; Zheng, Z. H. High thermoelectric performance of BixSb2−xTe3 alloy achieved via structural manipulation under optimized heat treatment. Chem. Eng. J. 2022, 435, 135062.

[8]

Jiang, L.; Han, L. H.; Lu, C. H.; Yang, S. Y.; Liu, Y. X.; Jiang, H. Z.; Yan, Y. G.; Tang, X. F.; Yang, D. W. Cu2Se as textured adjuvant for Pb-doped BiCuSeO materials leading to high thermoelectric performance. ACS Appl. Mater. Interfaces 2021, 13, 11977–11984.

[9]

Gu, Y.; Shi, X. L.; Pan, L.; Liu, W. D.; Sun, Q.; Tang, X.; Kou, L. Z.; Liu, Q. F.; Wang, Y. F.; Chen, Z. G. Rational electronic and structural designs advance BiCuSeO thermoelectrics. Adv. Funct. Mater. 2021, 31, 2101289.

[10]

Feng, B. Study on the optimization of thermoelectric properties of BiCuSeO ceramics by highly insulating/adiabatic SiO2 aerogel dispersion. J. Mater. Sci. Mater. Electron. 2021, 32, 25473–25480.

[11]

Ren, G. K.; Wang, S. Y.; Zhu, Y. C.; Ventura, K. J.; Tan, X.; Xu, W.; Lin, Y. H.; Yang, J.; Nan, C. W. Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy Environ. Sci. 2017, 10, 1590–1599.

[12]

Feng, B.; Jiang, X. X.; Pan, Z.; Hu, L.; Hu, X. M.; Liu, P. H.; Ren, Y.; Li, G. Q.; Li, Y. W.; Fan, X. A. Preparation, structure, and enhanced thermoelectric properties of Sm-doped BiCuSeO oxyselenide. Mater. Des. 2020, 185, 108263.

[13]
Liu, Y.; Zhu, Y. C.; Liu, W. S.; Marcelli, A.; Xu, W. Synergetic tuning of electrical/thermal transport via dual-doping in Bi0.96−xMgxPb0.06CuSeO. J. Am. Ceram. Soc. 2019, 102, 1541–1547.
[14]

Feng, B.; Li, G. Q.; Pan, Z.; Hu, X. M.; Liu, P. H.; He, Z.; Li, Y. W.; Fan, X. A. Enhanced thermoelectric properties in BiCuSeO ceramics by Pb/Ni dual doping and 3D modulation doping. J. Solid State Chem. 2019, 271, 1–7.

[15]

Li, F.; Zheng, Z. H.; Chang, Y.; Ruan, M.; Ge, Z. H.; Chen, Y. X.; Fan, P. Synergetic tuning of the electrical and thermal transport properties via Pb/Ag dual doping in BiCuSeO. ACS Appl. Mater. Interfaces 2019, 11, 45737–45745.

[16]

Liu, Y.; Zhao, L. D.; Zhu, Y. C.; Liu, Y. C.; Li, F.; Yu, M. J.; Liu, D. B.; Xu, W.; Lin, Y. H.; Nan, C. W. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv. Energy Mater. 2016, 6, 1502423.

[17]

Pei, Y. L.; Wu, H. J.; Wu, D.; Zheng, F. S.; He, J. Q. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J. Am. Chem. Soc. 2014, 136, 13902–13908.

[18]

Li, J.; Sui, J. H.; Pei, Y. L.; Barreteau, C.; Berardan, D.; Dragoe, N.; Cai, W.; He, J. Q.; Zhao, L. D. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 2012, 5, 8543–8547.

[19]

Toriyama, M. Y.; Qu, J. X.; Snyder, G. J.; Gorai, P. Defect chemistry and doping of BiCuSeO. J. Mater. Chem. A 2021, 9, 20685–20694.

[20]

Yusupov, K.; Inerbaev, T.; Råsander, M.; Pankratova, D.; Concina, I.; Larsson, A. J.; Vomiero, A. Improved thermoelectric performance of Bi-deficient BiCuSeO material doped with Nb, Y, and P. iScience 2021, 24, 103145.

[21]

Xu, L.; Luo, Y. C.; Lv, Y. Y.; Zhang, Y. Y.; Han, S.; Yao, S. H.; Zhou, J.; Chen, Y. B.; Chen, Y. F. An electronic phase diagram of hole-doped BiCuSeO crystals determined by transport characterization under various growth conditions. CrystEngComm 2021, 23, 273–281.

[22]

Xu, Y. S.; Han, J.; Luo, Y. D.; Liu, Y. C.; Ding, J. P.; Zhou, Z. F.; Liu, C.; Zou, M. C.; Lan, J. L.; Nan, C. W. et al. Enhanced CO2 reduction performance of BiCuSeO-based hybrid catalysts by synergetic photo-thermoelectric effect. Adv. Funct. Mater. 2021, 31, 2105001.

[23]

Jabar, B.; Li, F.; Zheng, Z. H.; Mansoor, A.; Zhu, Y. B.; Liang, C. B.; Ao, D. W.; Chen, Y. X.; Liang, G. X.; Fan, P. et al. Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2-Pnnm Bi2SeS2 with high thermoelectric performance. Nat. Commun. 2021, 12, 7192.

[24]

Lan, J. L.; Liu, Y. C.; Zhan, B.; Lin, Y. H.; Zhang, B. P.; Yuan, X.; Zhang, W. Q.; Xu, W.; Nan, C. W. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv. Mater. 2013, 25, 5086–5090.

[25]

Sui, J. H.; Li, J.; He, J. Q.; Pei, Y. L.; Berardan, D.; Wu, H. J.; Dragoe, N.; Cai, W.; Zhao, L. D. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ. Sci. 2013, 6, 2916–2920.

[26]

Yang, D. W.; Su, X. L.; Yan, Y. G.; Hu, T. Z.; Xie, H. Y.; He, J.; Uher, C.; Kanatzidis, M. G.; Tang, X. F. Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxychalcogenide Bi1−xPbxCuSeO. Chem. Materi. 2016, 28, 4628–4640.

[27]

Pei, Y. L.; He, J. Q.; Li, J. F.; Li, F.; Liu, Q. J.; Pan, W.; Barreteau, C.; Berardan, D.; Dragoe, N.; Zhao, L. D. High thermoelectric performance of oxyselenides: Intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Mater. 2013, 5, e47.

[28]

Tang, J.; Xu, R.; Zhang, J.; Li, D.; Zhou, W. P.; Li, X. T.; Wang, Z. H.; Xu, F.; Tang, G. D.; Chen, G. Light element doping and introducing spin entropy: An effective strategy for enhancement of thermoelectric properties in BiCuSeO. ACS Appl. Mater. Interfaces 2019, 11, 15543–15551.

[29]

Xu, F.; Li, A. M.; Huang, Z. F.; Rao, Y.; Lu, B.; Wu, Y. Effect of Al doping and Cu deficiency on the microstructures and thermoelectric properties of BiCuSeO-based thermoelectric materials. J. Electron. Mater. 2021, 50, 3580–3591.

[30]

Labégorre, J. B.; Al Rahal Al Orabi, R.; Virfeu, A.; Gamon, J.; Barboux, P.; Pautrot-D’Alençon, L.; Le Mercier, T.; Berthebaud, D.; Maignan, A.; Guilmeau, E. Electronic band structure engineering and enhanced thermoelectric transport properties in Pb-doped BiCuOS oxysulfide. Chem. Mater. 2018, 30, 1085–1094.

[31]

Yang, T. Y.; Huang, L. L.; Guo, J.; Zhang, Y. X.; Feng, J.; Ge, Z. H. Enhanced thermoelectric and mechanical properties of BaO-doped BiCuSeOδ ceramics. ACS Appl. Energy Mater. 2021, 11, 13077–13084.

[32]

Wang, H. X.; Hu, H. Y.; Man, N.; Xiong, C. L.; Xiao, Y. K.; Tan, X. J.; Liu, G. Q.; Jiang, J. Band flattening and phonon-defect scattering in cubic SnSe-AgSbTe2 alloy for thermoelectric enhancement. Mater. Today Phys. 2021, 16, 100298.

[33]

Jabar, B.; Qin, X. Y.; Mansoor, A.; Ming, H. W.; Huang, L. L.; Danish, M. H.; Zhang, J.; Li, D.; Zhu, C.; Xin, H. X. et al. Enhanced power factor and thermoelectric performance for n-type Bi2Te2.7Se0. 3 based composites incorporated with 3D topological insulator nanoinclusions. Nano Energy 2021, 80, 105512.

[34]

Ji, W. T.; Shi, X. L.; Liu, W. D.; Yuan, H. L.; Zheng, K.; Wan, B.; Shen, W. X.; Zhang, Z. F.; Fang, C.; Wang, Q. Q. et al. Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization. Nano Energy 2021, 87, 106171.

[35]

Ming, H. W.; Zhu, G. F.; Zhu, C.; Qin, X. Y.; Chen, T.; Zhang, J.; Li, D.; Xin, H. X.; Jabar, B. Boosting thermoelectric performance of Cu2SnSe3 via comprehensive band structure regulation and intensified phonon scattering by multidimensional defects. ACS Nano 2021, 15, 10532–10541.

[36]

Pei, Y. Z.; Wang, H.; Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater. 2012, 24, 6125–6135.

[37]

Zhao, L. D.; He, J. Q.; Hao, S. Q.; Wu, C. I.; Hogan, T. P.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J. Am. Chem. Soc. 2012, 134, 16327–16336.

[38]

Kim, M.; Kim, S. I.; Kim, S. W.; Kim, H. S.; Lee, K. H. Weighted mobility ratio engineering for high-performance Bi-Te-based thermoelectric materials via suppression of minority carrier transport. Adv. Mater. 2021, 33, 2005931.

[39]

Zhu, T. J.; Liu, Y. T.; Fu, C. G.; Heremans, J. P.; Snyder, J. G.; Zhao, X. B. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884.

[40]

Li, W.; Zheng, L. L.; Ge, B. H.; Lin, S. Q.; Zhang, X. Y.; Chen, Z. W.; Chang, Y. J.; Pei, Y. Z. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Adv. Mater. 2017, 29, 1605887.

[41]

He, J.; Tritt, T. M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997.

[42]

Zhang, J. W.; Song, L. R.; Pedersen, S. H.; Yin, H.; Hung, L. T.; Iversen, B. B. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 2017, 8, 13901.

[43]

Tang, Y. L.; Gibbs, Z. M.; Agapito, L. A.; Li, G. D.; Kim, H. S.; Nardelli, M. B.; Curtarolo, S.; Snyder, G. J. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 2015, 14, 1223–1228.

[44]

Lei, J. D.; Guan, W. B.; Zhang, D.; Ma, Z.; Yang, X. Y.; Wang, C.; Wang, Y. X. Isoelectronic indium doping for thermoelectric enhancements in BiCuSeO. Appl. Surf. Sci. 2019, 473, 985–991.

[45]

Chen, Y. X.; Shi, K. D.; Li, F.; Xu, X.; Ge, Z. H.; He, J. Q. Highly enhanced thermoelectric performance in BiCuSeO ceramics realized by Pb doping and introducing Cu deficiencies. J. Am. Ceram. Soc. 2019, 102, 5989–5996.

[46]

Feng, B.; Li, G. Q.; Pan, Z.; Hou, Y. H.; Zhang, C. C.; Jiang, C. P.; Hu, J.; Xiang, Q. S.; Li, Y. W.; He, Z. et al. Effect of Ba and Pb dual doping on the thermoelectric properties of BiCuSeO ceramics. Mater. Lett. 2018, 217, 189–193.

[47]

Zheng, Y. P.; Zou, M. C.; Zhang, W. Y.; Yi, D.; Lan, J. L.; Nan, C. W.; Lin, Y. H. Electrical and thermal transport behaviours of high-entropy perovskite thermoelectric oxides. J. Adv. Ceram. 2021, 10, 377–384.

[48]

Jabar, B.; Qin, X. Y.; Li, D.; Zhang, J.; Mansoor, A.; Xin, H. X.; Song, C. J.; Huang, L. L. Achieving high thermoelectric performance through constructing coherent interfaces and building interface potential barriers in n-type Bi2Te3/Bi2Te2.7Se0.3 nanocomposites. J. Mater. Chem. A 2019, 7, 19120–19129.

[49]

Jin, K. P.; Tiwari, J.; Feng, T. L.; Lou, Y.; Xu, B. Realizing high thermoelectric performance in eco-friendly Bi2S3 with nanopores and Cl-doping through shape-controlled nano precursors. Nano Energy 2022, 100, 107478.

[50]

Jabar, B.; Qin, X. Y.; Mansoor, A.; Ming, H. W.; Huang, L. L.; Zhang, J.; Danish, M. H.; Li, D.; Zhu, C.; Zhang, J. H. et al. Enhanced thermoelectric performance of n-type SnxBi2Te2.7Se0.3 based composites embedded with in-situ formed SnBi and Te nanoinclusions. Compos. B Eng. 2020, 197, 108151.

[51]

Zhu, Z. Y.; Tiwari, J.; Feng, T. L.; Shi, Z.; Lou, Y.; Biao, X. High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS. Nano Res. 2022, 15, 4739–4746.

Nano Research
Pages 1679-1687
Cite this article:
Chen Y-X, Qin W, Mansoor A, et al. Realizing high thermoelectric performance via selective resonant doping in oxyselenide BiCuSeO. Nano Research, 2023, 16(1): 1679-1687. https://doi.org/10.1007/s12274-022-4810-8
Topics:

1015

Views

12

Crossref

9

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 24 May 2022
Revised: 01 July 2022
Accepted: 20 July 2022
Published: 31 August 2022
© Tsinghua University Press 2022
Return