AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modulating planarity of cyanine dye to construct highly stable H-aggregates for enhanced photothermal therapy

Kai WeiYanxin WuPengyu LiXian ZhengChendong Ji( )Meizhen Yin( )
State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

A quinoline cyanine (QCy) with symmetrical rigid planar quinoline structures was synthesized and self-assembled into stable H-aggregated nanoparticles (QCy NPs), showing high photostability and significantly enhanced photothermal conversion efficiency (PCE, from 20.1% to 63.8%). With mitochondrial anchoring ability, QCy NPs in low-doses achieve successes in photoacoustic imaging-guided tumor photothermal therapy (PTT).

Abstract

Self-assembly of dyes has become a flexible strategy to modulate their photophysical properties. H-aggregates show great potential to increase heat generation, while the precise designing of H-aggregates as efficient photothermal agents is still challenging. Herein, a quinoline cyanine (QCy) is developed for constructing stable H-aggregated nanoparticles (NPs) to significantly enhance photostability and photothermal conversion efficiency (PCE). With symmetrical rigid planar quinoline structures, QCy has a small and symmetrical dihedral angle (11.9°), which ensures excellent molecular planarity. In aqueous solution, the planar QCy can form close π–π molecular stacking, and fast self-assemble into stable H-aggregates even at low concentrations (1 × 10−7 M). QCy H-aggregates are sphere-like NPs (QCy NPs) with an average diameter of 120 nm and exhibit high stability. H-aggregation of QCy significantly enhances PCE from 20.1% (non-H-aggregated QCy) to 63.8% (QCy NPs). In addition, the positive charge of quaternarized quinoline provides mitochondrial anchoring ability, which further enhances the photothermal effect. With high PCE and tumor accumulation, QCy NPs in low-doses have been successfully used in photoacoustic imaging-guided tumor photothermal therapy.

Electronic Supplementary Material

Download File(s)
12274_2022_4818_MOESM1_ESM.pdf (3.8 MB)
12274_2022_4818_MOESM2_ESM.pdf (16.6 MB)

References

[1]

Sun, R.; Liu, M. Z.; Xu, Z. J.; Song, B.; He, Y.; Wang, H. Y. Silicon-based nanoprobes cross the blood–brain barrier for photothermal therapy of glioblastoma. Nano Res. 2022, 15, 7392–7401.

[2]

Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

[3]

Sun, H. T.; Zhang, Q.; Li, J. C.; Peng, S. J.; Wang, X. L.; Cai, R. Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 2021, 37, 101073.

[4]

Xu, C.; Pu, K. Y. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 2021, 50, 1111–1137.

[5]

Ji, C. D.; Cheng, W. Y.; Hu, Y. S.; Liu, Y. F.; Liu, F. Y.; Yin, M. Z. A nano vector with photothermally enhanced drug release and retention to overcome cancer multidrug resistance. Nano Today 2021, 36, 101020.

[6]

Wang, H. Y.; Chang, J. J.; Shi, M. W.; Pan, W.; Li, N.; Tang, B. A dual-targeted organic photothermal agent for enhanced photothermal therapy. Angew. Chem., Int. Ed. 2019, 58, 1057–1061.

[7]

Ni, J. S.; Zhang, X.; Yang, G.; Kang, T. Y.; Lin, X. W.; Zha, M.; Li, Y. X.; Wang, L. D.; Li, K. A photoinduced nonadiabatic decay-guided molecular motor triggers effective photothermal conversion for cancer therapy. Angew. Chem., Int. Ed. 2020, 59, 11298–11302.

[8]

Zhen, X.; Pu, K. Y.; Jiang, X. Q. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: Signal amplification and second near-infrared construction. Small 2021, 17, 2004723.

[9]

Zhang, S. B.; Guo, W. S.; Wei, J.; Li, C.; Liang, X. J.; Yin, M. Z. Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy. ACS Nano 2017, 11, 3797–3805.

[10]

Liu, C.; Zhang, S. B.; Li, J. H.; Wei, J.; Müllen, K.; Yin, M. Z. A water-soluble, NIR-absorbing quaterrylenediimide chromophore for photoacoustic imaging and efficient photothermal cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 1638–1642.

[11]

Shi, N. N.; Shi, Y. H.; Shao, J. W.; Yang, X.; Zhang, X. L.; Zhang, Y.; Warsame, U. F.; Shao, J. J.; Dong, X. C. Selenadiazolobenzotriazole based near infrared dyes with enhanced intramolecular charge transfer and photothermal effect: Synthesis, characterization and photophysical properties. Dyes Pigm. 2019, 160, 683–691.

[12]

Li, J. H.; Liu, C.; Hu, Y. S.; Ji, C. D.; Li, S. L.; Yin, M. Z. pH-responsive perylenediimide nanoparticles for cancer trimodality imaging and photothermal therapy. Theranostics 2020, 10, 166–178.

[13]

Hu, W. B.; Miao, X. F.; Tao, H. J.; Baev, A.; Ren, C.; Fan, Q. L.; He, T. C.; Huang, W.; Prasad, P. N. Manipulating nonradiative decay channel by intermolecular charge transfer for exceptionally improved photothermal conversion. ACS Nano 2019, 13, 12006–12014.

[14]

Xi, D. M.; Xiao, M.; Cao, J. F.; Zhao, L. Z.; Xu, N.; Long, S. R.; Fan, J. L.; Shao, K.; Sun, W.; Yan, X. H. et al. NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion efficiency for photothermal therapy. Adv. Mater. 2020, 32, 1907855.

[15]

Liu, S. J.; Zhou, X.; Zhang, H. K.; Ou, H. L.; Lam, J. W. Y.; Liu, Y.; Shi, L. Q.; Ding, D.; Tang, B. Z. Molecular motion in aggregates: Manipulating TICT for boosting photothermal theranostics. J. Am. Chem. Soc. 2019, 141, 5359–5368.

[16]

Ji, C. D.; Gao, Q.; Dong, X. H.; Yin, W. Y.; Gu, Z. J.; Gan, Z. H.; Zhao, Y. L.; Yin, M. Z. A size-reducible nanodrug with an aggregation-enhanced photodynamic effect for deep chemo-photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 11384–11388.

[17]

Zhao, L. Y.; Liu, Y. M.; Xing, R. R.; Yan, X. H. Supramolecular photothermal effects: A promising mechanism for efficient thermal conversion. Angew. Chem., Int. Ed. 2020, 59, 3793–3801.

[18]

Zou, Q. L.; Abbas, M.; Zhao, L. Y.; Li, S. K.; Shen, G. Z.; Yan, X. H. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 2017, 139, 1921–1927.

[19]

Lyu, Y.; Zeng, J. F.; Jiang, Y. Y.; Zhen, X.; Wang, T.; Qiu, S. S.; Lou, X.; Gao, M. Y.; Pu, K. Y. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Nano 2018, 12, 1801–1810.

[20]

Ji, C. D.; Lai, L. M.; Li, P. Y.; Wu, Z.; Cheng, W. Y.; Yin, M. Z. Organic dye assemblies with aggregation-induced photophysical changes and their bio-applications. Aggregate 2021, 2, e39.

[21]

Jiang, Z. Q.; Yuan, B.; Wang, Y. J.; Wei, Z. N.; Sun, S.; Akakuru, O. U.; Li, Y.; Li, J.; Wu, A. G. Near-infrared heptamethine cyanine dye-based nanoscale coordination polymers with intrinsic nucleus-targeting for low temperature photothermal therapy. Nano Today 2020, 34, 100910.

[22]

Shi, M. W.; Fu, Z. L.; Pan, W.; Chen, Y. Y.; Wang, K. Y.; Zhou, P.; Li, N.; Tang, B. A protein-binding molecular photothermal agent for tumor ablation. Angew. Chem., Int. Ed. 2021, 60, 13564–13568.

[23]

Mu, X.; Lu, Y. X.; Wu, F. P.; Wei, Y. H.; Ma, H. H.; Zhao, Y. J.; Sun, J.; Liu, S. F.; Zhou, X. F.; Li, Z. B. Supramolecular nanodiscs self-assembled from non-ionic heptamethine cyanine for imaging-guided cancer photothermal therapy. Adv. Mater. 2020, 32, 1906711.

[24]

Jung, H. S.; Lee, J. H.; Kim, K.; Koo, S.; Verwilst, P.; Sessler, J. L.; Kang, C.; Kim, J. S. A mitochondria-targeted cryptocyanine-based photothermogenic photosensitizer. J. m. Chem. Soc. 2017, 139, 9972–9978.

[25]

Zhao, X. Z.; Long, S. R.; Li, M. L.; Cao, J. F.; Li, Y. C.; Guo, L. Y.; Sun, W.; Du, J. J.; Fan, J. L.; Peng, X. J. Oxygen-dependent regulation of excited-state deactivation process of rational photosensitizer for smart phototherapy. J. Am. Chem. Soc. 2020, 142, 1510–1517.

[26]

Wang, Y. F.; Du, W.; Zhang, T.; Zhu, Y.; Ni, Y. H.; Wang, C. C.; Raya, F. M. S.; Zou, L. W.; Wang, L. S.; Liang, G. L. A self-evaluating photothermal therapeutic nanoparticle. ACS Nano 2020, 14, 9585–9593.

[27]

Wan, J. X.; Sun, L. Y.; Wu, P.; Wang, F.; Guo, J.; Cheng, J. J.; Wang, C. C. Synthesis of indocyanine green functionalized comblike poly(aspartic acid) derivatives for enhanced cancer cell ablation by targeting the endoplasmic reticulum. Polym. Chem. 2018, 9, 1206–1215.

[28]

Deng, Y. B.; Huang, L.; Yang, H.; Ke, H. T.; He, H.; Guo, Z. Q.; Yang, T.; Zhu, A. J.; Wu, H.; Chen, H. B. Cyanine-anchored silica nanochannels for light-driven synergistic thermo-chemotherapy. Small 2017, 13, 1602747.

[29]

Chen, W.; Cheng, C. A.; Cosco, E. D.; Ramakrishnan, S.; Lingg, J. G. P.; Bruns, O. T.; Zink, J. I.; Sletten, E. M. Shortwave infrared imaging with J-aggregates stabilized in hollow mesoporous silica nanoparticles. J. Am. Chem. Soc. 2019, 141, 12475–12480.

[30]

Song, X. J.; Zhang, R.; Liang, C.; Chen, Q.; Gong, H.; Liu, Z. Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. Biomaterials 2015, 57, 84–92.

[31]

Bricks, J. L.; Slominskii, Y. L.; Panas, I. D.; Demchenko, A. P. Fluorescent J-aggregates of cyanine dyes: Basic research and applications review. Methods Appl. Fluoresc. 2017, 6, 012001.

[32]

Heyne, B. Self-assembly of organic dyes in supramolecular aggregates. Photochem. Photobiol. Sci. 2016, 15, 1103–1114.

[33]

Hestand, N. J.; Spano, F. C. Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 2018, 118, 7069–7163.

[34]

Zheng, R.; Yang, J.; Mamuti, M.; Hou, D. Y.; An, H. W.; Zhao, Y. L.; Wang, H. Controllable self-assembly of peptide-cyanine conjugates in vivo as fine-tunable theranostics. Angew. Chem., Int. Ed. 2021, 60, 7809–7819.

[35]

Wang, Y. G.; Xia, G. M.; Tan, M. M.; Wang, M. D.; Li, Y. Z.; Wang, H. M. H-dimeric nanospheres of amphipathic squaraine dye with an 81.2% photothermal conversion efficiency for photothermal therapy. Adv. Funct. Mater. 2022, 32, 2113098.

[36]

Li, X. J.; Yang, M. W.; Cao, J. F.; Gu, H.; Liu, W. J.; Xia, T. P.; Sun, W.; Fan, J. L.; Peng, X. J. H-aggregates of prodrug-hemicyanine conjugate for enhanced photothermal therapy and sequential hypoxia-activated chemotherapy. ACS Materials Lett. 2022, 4, 724–732.

[37]

Wu, F. P.; Lu, Y. X.; Mu, X. L. E.; Chen, Z. T.; Liu, S. S.; Zhou, X. F.; Liu, S. F.; Li, Z. B. Intriguing H-aggregates of heptamethine cyanine for imaging-guided photothermal cancer therapy. ACS Appl. Mater. Interfaces 2020, 12, 32388–32396.

[38]

Wang, B. L.; Jiang, C. DNA G-quadruplexes as a template to direct cyanine dyes to form H-aggregates and application of the self-assembly entity as a new G-quadruplexes ligands screening platform. Anal. Chem. 2019, 91, 1541–1547.

[39]

Nicoli, F.; Roos, M. K.; Hemmig, E. A.; Di Antonio, M.; De Vivie-Riedle, R.; Liedl, T. Proximity-induced H-aggregation of cyanine dyes on DNA-duplexes. J. Phys. Chem. A 2016, 120, 9941–9947.

[40]

Tsai, W. W.; Tevis, I. D.; Tayi, A. S.; Cui, H. G.; Stupp, S. I. Semiconducting nanowires from hairpin-shaped self-assembling sexithiophenes. J. Phys. Chem. B 2010, 114, 14778–14786.

[41]

Li, Z.; Mukhopadhyay, S.; Jang, S. H.; Brédas, J. L.; Jen, A. K. Y. Supramolecular assembly of complementary cyanine salt J-aggregates. J. Am. Chem. Soc. 2015, 137, 11920–11923.

[42]

Cai, Y.; Ni, D. Q.; Cheng, W. Y.; Ji, C. D.; Wang, Y. L.; Müllen, K.; Su, Z. Q.; Liu, Y.; Chen, C. Y.; Yin, M. Z. Enzyme-triggered disassembly of perylene monoimide-based nanoclusters for activatable and deep photodynamic therapy. Angew. Chem., Int. Ed. 2020, 59, 14014–14018.

[43]

Pleckaitis, M.; Habach, F.; Kontenis, L.; Steinbach, G.; Jarockyte, G.; Kalnaityte, A.; Domonkos, I.; Akhtar, P.; Alizadeh, M.; Bagdonas, S. Structure and principles of self-assembly of giant “sea urchin” type sulfonatophenyl porphine aggregates. Nano Res. 2022, 15, 5527–5537.

[44]

Zou, Y.; Li, M. L.; Xiong, T.; Zhao, X. Z.; Du, J. J.; Fan, J. L.; Peng, X. J. A single molecule drug targeting photosensitizer for enhanced breast cancer photothermal therapy. Small 2020, 16, 1907677.

[45]

Li, C. N.; Zhang, W.; Liu, S.; Hu, X. L.; Xie, Z. G. Mitochondria-targeting organic nanoparticles for enhanced photodynamic/photothermal therapy. ACS Appl. Mater. Interfaces 2020, 12, 30077–30084.

[46]

Zhang, Y. Y.; Li, Z.; Hu, W.; Liu, Z. H. A mitochondrial-targeting near-infrared fluorescent probe for visualizing and monitoring viscosity in live cells and tissues. Anal. Chem. 2019, 91, 10302–10309.

[47]

Wang, K. N.; Liu, L. Y.; Qi, G. B.; Chao, X. J.; Ma, W.; Yu, Z. Q.; Pan, Q. L.; Mao, Z. W.; Liu, B. Light-driven cascade mitochondria-to-nucleus photosensitization in cancer cell ablation. Adv. Sci. 2021, 8, 2004379.

[48]

Kim, K. Y.; Jin, H. Y.; Park, J.; Jung, S. H.; Lee, J. H.; Park, H.; Kim, S. K.; Bae, J.; Jung, J. H. Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery. Nano Res. 2018, 11, 1082–1098.

[49]

Yuan, P.; Ruan, Z.; Yan, L. F. Tetraphenylporphine-modified polymeric nanoparticles containing NIR photosensitizer for mitochondria-targeting and imaging-guided photodynamic therapy. ACS Biomater. Sci. Eng. 2020, 6, 1043–1051.

[50]

Pan, T.; Fu, W.; Xin, H. B.; Geng, S. Y.; Li, Z. B.; Cui, H. D.; Zhang, Y. L.; Chu, P. K.; Zhou, W. H.; Yu, X. F. Calcium phosphate mineralized black phosphorous with enhanced functionality and anticancer bioactivity. Adv. Funct. Mater. 2020, 30, 2003069.

[51]

Liu, J. P.; Sun, L. Y.; Li, L.; Zhang, R.; Xu, Z. P. Synergistic cancer photochemotherapy via layered double hydroxide-based trimodal nanomedicine at very low therapeutic doses. ACS Appl. Mater. Interfaces 2021, 13, 7115–7126.

[52]

Bian, W. Q.; Pan, Z. X.; Wang, Y. K.; Long, W.; Chen, Z. F.; Chen, N. P.; Zeng, Y. X.; Yuan, J. P.; Liu, X. J.; Lu, Y. J. et al. A mitochondria-targeted thiazoleorange-based photothermal agent for enhanced photothermal therapy for tumors. Bioorg. Chem. 2021, 113, 104954.

[53]

Liu, R. F.; Tang, J.; Xu, Y. X.; Zhou, Y. M.; Dai, Z. F. Nano-sized indocyanine green J-aggregate as a one-component theranostic agent. Nanotheranostics 2017, 1, 430–439.

Nano Research
Pages 970-979
Cite this article:
Wei K, Wu Y, Li P, et al. Modulating planarity of cyanine dye to construct highly stable H-aggregates for enhanced photothermal therapy. Nano Research, 2023, 16(1): 970-979. https://doi.org/10.1007/s12274-022-4818-0
Topics:

882

Views

17

Crossref

20

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 26 June 2022
Revised: 25 July 2022
Accepted: 25 July 2022
Published: 26 August 2022
© Tsinghua University Press 2022
Return