Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Self-assembly of dyes has become a flexible strategy to modulate their photophysical properties. H-aggregates show great potential to increase heat generation, while the precise designing of H-aggregates as efficient photothermal agents is still challenging. Herein, a quinoline cyanine (QCy) is developed for constructing stable H-aggregated nanoparticles (NPs) to significantly enhance photostability and photothermal conversion efficiency (PCE). With symmetrical rigid planar quinoline structures, QCy has a small and symmetrical dihedral angle (11.9°), which ensures excellent molecular planarity. In aqueous solution, the planar QCy can form close π–π molecular stacking, and fast self-assemble into stable H-aggregates even at low concentrations (1 × 10−7 M). QCy H-aggregates are sphere-like NPs (QCy NPs) with an average diameter of 120 nm and exhibit high stability. H-aggregation of QCy significantly enhances PCE from 20.1% (non-H-aggregated QCy) to 63.8% (QCy NPs). In addition, the positive charge of quaternarized quinoline provides mitochondrial anchoring ability, which further enhances the photothermal effect. With high PCE and tumor accumulation, QCy NPs in low-doses have been successfully used in photoacoustic imaging-guided tumor photothermal therapy.
Sun, R.; Liu, M. Z.; Xu, Z. J.; Song, B.; He, Y.; Wang, H. Y. Silicon-based nanoprobes cross the blood–brain barrier for photothermal therapy of glioblastoma. Nano Res. 2022, 15, 7392–7401.
Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.
Sun, H. T.; Zhang, Q.; Li, J. C.; Peng, S. J.; Wang, X. L.; Cai, R. Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 2021, 37, 101073.
Xu, C.; Pu, K. Y. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 2021, 50, 1111–1137.
Ji, C. D.; Cheng, W. Y.; Hu, Y. S.; Liu, Y. F.; Liu, F. Y.; Yin, M. Z. A nano vector with photothermally enhanced drug release and retention to overcome cancer multidrug resistance. Nano Today 2021, 36, 101020.
Wang, H. Y.; Chang, J. J.; Shi, M. W.; Pan, W.; Li, N.; Tang, B. A dual-targeted organic photothermal agent for enhanced photothermal therapy. Angew. Chem., Int. Ed. 2019, 58, 1057–1061.
Ni, J. S.; Zhang, X.; Yang, G.; Kang, T. Y.; Lin, X. W.; Zha, M.; Li, Y. X.; Wang, L. D.; Li, K. A photoinduced nonadiabatic decay-guided molecular motor triggers effective photothermal conversion for cancer therapy. Angew. Chem., Int. Ed. 2020, 59, 11298–11302.
Zhen, X.; Pu, K. Y.; Jiang, X. Q. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: Signal amplification and second near-infrared construction. Small 2021, 17, 2004723.
Zhang, S. B.; Guo, W. S.; Wei, J.; Li, C.; Liang, X. J.; Yin, M. Z. Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy. ACS Nano 2017, 11, 3797–3805.
Liu, C.; Zhang, S. B.; Li, J. H.; Wei, J.; Müllen, K.; Yin, M. Z. A water-soluble, NIR-absorbing quaterrylenediimide chromophore for photoacoustic imaging and efficient photothermal cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 1638–1642.
Shi, N. N.; Shi, Y. H.; Shao, J. W.; Yang, X.; Zhang, X. L.; Zhang, Y.; Warsame, U. F.; Shao, J. J.; Dong, X. C. Selenadiazolobenzotriazole based near infrared dyes with enhanced intramolecular charge transfer and photothermal effect: Synthesis, characterization and photophysical properties. Dyes Pigm. 2019, 160, 683–691.
Li, J. H.; Liu, C.; Hu, Y. S.; Ji, C. D.; Li, S. L.; Yin, M. Z. pH-responsive perylenediimide nanoparticles for cancer trimodality imaging and photothermal therapy. Theranostics 2020, 10, 166–178.
Hu, W. B.; Miao, X. F.; Tao, H. J.; Baev, A.; Ren, C.; Fan, Q. L.; He, T. C.; Huang, W.; Prasad, P. N. Manipulating nonradiative decay channel by intermolecular charge transfer for exceptionally improved photothermal conversion. ACS Nano 2019, 13, 12006–12014.
Xi, D. M.; Xiao, M.; Cao, J. F.; Zhao, L. Z.; Xu, N.; Long, S. R.; Fan, J. L.; Shao, K.; Sun, W.; Yan, X. H. et al. NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion efficiency for photothermal therapy. Adv. Mater. 2020, 32, 1907855.
Liu, S. J.; Zhou, X.; Zhang, H. K.; Ou, H. L.; Lam, J. W. Y.; Liu, Y.; Shi, L. Q.; Ding, D.; Tang, B. Z. Molecular motion in aggregates: Manipulating TICT for boosting photothermal theranostics. J. Am. Chem. Soc. 2019, 141, 5359–5368.
Ji, C. D.; Gao, Q.; Dong, X. H.; Yin, W. Y.; Gu, Z. J.; Gan, Z. H.; Zhao, Y. L.; Yin, M. Z. A size-reducible nanodrug with an aggregation-enhanced photodynamic effect for deep chemo-photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 11384–11388.
Zhao, L. Y.; Liu, Y. M.; Xing, R. R.; Yan, X. H. Supramolecular photothermal effects: A promising mechanism for efficient thermal conversion. Angew. Chem., Int. Ed. 2020, 59, 3793–3801.
Zou, Q. L.; Abbas, M.; Zhao, L. Y.; Li, S. K.; Shen, G. Z.; Yan, X. H. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 2017, 139, 1921–1927.
Lyu, Y.; Zeng, J. F.; Jiang, Y. Y.; Zhen, X.; Wang, T.; Qiu, S. S.; Lou, X.; Gao, M. Y.; Pu, K. Y. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Nano 2018, 12, 1801–1810.
Ji, C. D.; Lai, L. M.; Li, P. Y.; Wu, Z.; Cheng, W. Y.; Yin, M. Z. Organic dye assemblies with aggregation-induced photophysical changes and their bio-applications. Aggregate 2021, 2, e39.
Jiang, Z. Q.; Yuan, B.; Wang, Y. J.; Wei, Z. N.; Sun, S.; Akakuru, O. U.; Li, Y.; Li, J.; Wu, A. G. Near-infrared heptamethine cyanine dye-based nanoscale coordination polymers with intrinsic nucleus-targeting for low temperature photothermal therapy. Nano Today 2020, 34, 100910.
Shi, M. W.; Fu, Z. L.; Pan, W.; Chen, Y. Y.; Wang, K. Y.; Zhou, P.; Li, N.; Tang, B. A protein-binding molecular photothermal agent for tumor ablation. Angew. Chem., Int. Ed. 2021, 60, 13564–13568.
Mu, X.; Lu, Y. X.; Wu, F. P.; Wei, Y. H.; Ma, H. H.; Zhao, Y. J.; Sun, J.; Liu, S. F.; Zhou, X. F.; Li, Z. B. Supramolecular nanodiscs self-assembled from non-ionic heptamethine cyanine for imaging-guided cancer photothermal therapy. Adv. Mater. 2020, 32, 1906711.
Jung, H. S.; Lee, J. H.; Kim, K.; Koo, S.; Verwilst, P.; Sessler, J. L.; Kang, C.; Kim, J. S. A mitochondria-targeted cryptocyanine-based photothermogenic photosensitizer. J. m. Chem. Soc. 2017, 139, 9972–9978.
Zhao, X. Z.; Long, S. R.; Li, M. L.; Cao, J. F.; Li, Y. C.; Guo, L. Y.; Sun, W.; Du, J. J.; Fan, J. L.; Peng, X. J. Oxygen-dependent regulation of excited-state deactivation process of rational photosensitizer for smart phototherapy. J. Am. Chem. Soc. 2020, 142, 1510–1517.
Wang, Y. F.; Du, W.; Zhang, T.; Zhu, Y.; Ni, Y. H.; Wang, C. C.; Raya, F. M. S.; Zou, L. W.; Wang, L. S.; Liang, G. L. A self-evaluating photothermal therapeutic nanoparticle. ACS Nano 2020, 14, 9585–9593.
Wan, J. X.; Sun, L. Y.; Wu, P.; Wang, F.; Guo, J.; Cheng, J. J.; Wang, C. C. Synthesis of indocyanine green functionalized comblike poly(aspartic acid) derivatives for enhanced cancer cell ablation by targeting the endoplasmic reticulum. Polym. Chem. 2018, 9, 1206–1215.
Deng, Y. B.; Huang, L.; Yang, H.; Ke, H. T.; He, H.; Guo, Z. Q.; Yang, T.; Zhu, A. J.; Wu, H.; Chen, H. B. Cyanine-anchored silica nanochannels for light-driven synergistic thermo-chemotherapy. Small 2017, 13, 1602747.
Chen, W.; Cheng, C. A.; Cosco, E. D.; Ramakrishnan, S.; Lingg, J. G. P.; Bruns, O. T.; Zink, J. I.; Sletten, E. M. Shortwave infrared imaging with J-aggregates stabilized in hollow mesoporous silica nanoparticles. J. Am. Chem. Soc. 2019, 141, 12475–12480.
Song, X. J.; Zhang, R.; Liang, C.; Chen, Q.; Gong, H.; Liu, Z. Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. Biomaterials 2015, 57, 84–92.
Bricks, J. L.; Slominskii, Y. L.; Panas, I. D.; Demchenko, A. P. Fluorescent J-aggregates of cyanine dyes: Basic research and applications review. Methods Appl. Fluoresc. 2017, 6, 012001.
Heyne, B. Self-assembly of organic dyes in supramolecular aggregates. Photochem. Photobiol. Sci. 2016, 15, 1103–1114.
Hestand, N. J.; Spano, F. C. Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 2018, 118, 7069–7163.
Zheng, R.; Yang, J.; Mamuti, M.; Hou, D. Y.; An, H. W.; Zhao, Y. L.; Wang, H. Controllable self-assembly of peptide-cyanine conjugates in vivo as fine-tunable theranostics. Angew. Chem., Int. Ed. 2021, 60, 7809–7819.
Wang, Y. G.; Xia, G. M.; Tan, M. M.; Wang, M. D.; Li, Y. Z.; Wang, H. M. H-dimeric nanospheres of amphipathic squaraine dye with an 81.2% photothermal conversion efficiency for photothermal therapy. Adv. Funct. Mater. 2022, 32, 2113098.
Li, X. J.; Yang, M. W.; Cao, J. F.; Gu, H.; Liu, W. J.; Xia, T. P.; Sun, W.; Fan, J. L.; Peng, X. J. H-aggregates of prodrug-hemicyanine conjugate for enhanced photothermal therapy and sequential hypoxia-activated chemotherapy. ACS Materials Lett. 2022, 4, 724–732.
Wu, F. P.; Lu, Y. X.; Mu, X. L. E.; Chen, Z. T.; Liu, S. S.; Zhou, X. F.; Liu, S. F.; Li, Z. B. Intriguing H-aggregates of heptamethine cyanine for imaging-guided photothermal cancer therapy. ACS Appl. Mater. Interfaces 2020, 12, 32388–32396.
Wang, B. L.; Jiang, C. DNA G-quadruplexes as a template to direct cyanine dyes to form H-aggregates and application of the self-assembly entity as a new G-quadruplexes ligands screening platform. Anal. Chem. 2019, 91, 1541–1547.
Nicoli, F.; Roos, M. K.; Hemmig, E. A.; Di Antonio, M.; De Vivie-Riedle, R.; Liedl, T. Proximity-induced H-aggregation of cyanine dyes on DNA-duplexes. J. Phys. Chem. A 2016, 120, 9941–9947.
Tsai, W. W.; Tevis, I. D.; Tayi, A. S.; Cui, H. G.; Stupp, S. I. Semiconducting nanowires from hairpin-shaped self-assembling sexithiophenes. J. Phys. Chem. B 2010, 114, 14778–14786.
Li, Z.; Mukhopadhyay, S.; Jang, S. H.; Brédas, J. L.; Jen, A. K. Y. Supramolecular assembly of complementary cyanine salt J-aggregates. J. Am. Chem. Soc. 2015, 137, 11920–11923.
Cai, Y.; Ni, D. Q.; Cheng, W. Y.; Ji, C. D.; Wang, Y. L.; Müllen, K.; Su, Z. Q.; Liu, Y.; Chen, C. Y.; Yin, M. Z. Enzyme-triggered disassembly of perylene monoimide-based nanoclusters for activatable and deep photodynamic therapy. Angew. Chem., Int. Ed. 2020, 59, 14014–14018.
Pleckaitis, M.; Habach, F.; Kontenis, L.; Steinbach, G.; Jarockyte, G.; Kalnaityte, A.; Domonkos, I.; Akhtar, P.; Alizadeh, M.; Bagdonas, S. Structure and principles of self-assembly of giant “sea urchin” type sulfonatophenyl porphine aggregates. Nano Res. 2022, 15, 5527–5537.
Zou, Y.; Li, M. L.; Xiong, T.; Zhao, X. Z.; Du, J. J.; Fan, J. L.; Peng, X. J. A single molecule drug targeting photosensitizer for enhanced breast cancer photothermal therapy. Small 2020, 16, 1907677.
Li, C. N.; Zhang, W.; Liu, S.; Hu, X. L.; Xie, Z. G. Mitochondria-targeting organic nanoparticles for enhanced photodynamic/photothermal therapy. ACS Appl. Mater. Interfaces 2020, 12, 30077–30084.
Zhang, Y. Y.; Li, Z.; Hu, W.; Liu, Z. H. A mitochondrial-targeting near-infrared fluorescent probe for visualizing and monitoring viscosity in live cells and tissues. Anal. Chem. 2019, 91, 10302–10309.
Wang, K. N.; Liu, L. Y.; Qi, G. B.; Chao, X. J.; Ma, W.; Yu, Z. Q.; Pan, Q. L.; Mao, Z. W.; Liu, B. Light-driven cascade mitochondria-to-nucleus photosensitization in cancer cell ablation. Adv. Sci. 2021, 8, 2004379.
Kim, K. Y.; Jin, H. Y.; Park, J.; Jung, S. H.; Lee, J. H.; Park, H.; Kim, S. K.; Bae, J.; Jung, J. H. Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery. Nano Res. 2018, 11, 1082–1098.
Yuan, P.; Ruan, Z.; Yan, L. F. Tetraphenylporphine-modified polymeric nanoparticles containing NIR photosensitizer for mitochondria-targeting and imaging-guided photodynamic therapy. ACS Biomater. Sci. Eng. 2020, 6, 1043–1051.
Pan, T.; Fu, W.; Xin, H. B.; Geng, S. Y.; Li, Z. B.; Cui, H. D.; Zhang, Y. L.; Chu, P. K.; Zhou, W. H.; Yu, X. F. Calcium phosphate mineralized black phosphorous with enhanced functionality and anticancer bioactivity. Adv. Funct. Mater. 2020, 30, 2003069.
Liu, J. P.; Sun, L. Y.; Li, L.; Zhang, R.; Xu, Z. P. Synergistic cancer photochemotherapy via layered double hydroxide-based trimodal nanomedicine at very low therapeutic doses. ACS Appl. Mater. Interfaces 2021, 13, 7115–7126.
Bian, W. Q.; Pan, Z. X.; Wang, Y. K.; Long, W.; Chen, Z. F.; Chen, N. P.; Zeng, Y. X.; Yuan, J. P.; Liu, X. J.; Lu, Y. J. et al. A mitochondria-targeted thiazoleorange-based photothermal agent for enhanced photothermal therapy for tumors. Bioorg. Chem. 2021, 113, 104954.
Liu, R. F.; Tang, J.; Xu, Y. X.; Zhou, Y. M.; Dai, Z. F. Nano-sized indocyanine green J-aggregate as a one-component theranostic agent. Nanotheranostics 2017, 1, 430–439.