AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Water-soluble Cu30 nanoclusters as a click chemistry catalyst for living cell labeling via azide-alkyne cycloaddition

Ge Yang1Yali Xie1Yaru Wang1Ying Tang2Leng Leng Chng3Fuyi Jiang4Fanglin Du1Xianfeng Zhou2( )Jackie Y. Ying3,5( )Xun Yuan1 ( )
School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
School of Environment and Material Engineering, Yantai University, Yantai 264005, China
NanoBio Lab, A*STAR Infectious Diseases Labs, A*STAR, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
Show Author Information

Graphical Abstract

We report the novel synthesis of water-soluble thiolated Cu30 nanoclusters (NCs) as a click chemistry catalyst for living cell labeling via interfacial azide-alkyne cycloaddition.

Abstract

Cu(I)-catalyzed azide-alkyne cycloadditions (CuAAC) have gained increasing interest in the selective labeling of living cells and organisms with biomolecules. However, their application is constrained either by the high cytotoxicity of Cu(I) ions or the low activity of CuAAC in the internal space of living cells. This paper reports the design of a novel Cu-based nanocatalyst, water-soluble thiolated Cu30 nanoclusters (NCs), for living cell labeling via CuAAC. The Cu30 NCs offer good biocompatibility, excellent stability, and scalable synthesis (e.g., gram scale), which would facilitate potential commercial applications. By combining the highly localized Cu(I) active species on the NC surface and good structural stability, the Cu30 NCs exhibit superior catalytic activities for a series of Huisgen cycloaddition reactions with good recyclability. More importantly, the biocompatibility of the Cu30 NCs enables them to be a good catalyst for CuAAC, whereby the challenging labeling of living cells can be achieved via CuAAC on the cell membrane. This study sheds light on the facile synthesis of atomically precise Cu NCs, as well as the design of novel Cu NCs-based nanocatalysts for CuAAC in intracellular bioorthogonal applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4821_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Kang, S. W.; Lee, S.; Na, J. H.; Yoon, H. I.; Lee, D. E.; Koo, H.; Cho, Y. W.; Kim, S. H.; Jeong, S. Y.; Kwon, I. C. et al. Cell labeling and tracking method without distorted signals by phagocytosis of macrophages. Theranostics 2014, 4, 420–431.

[2]

Chandrasekaran, R.; Madheswaran, T.; Tharmalingam, N.; Bose, R. J. C.; Park, H.; Ha, D. H. Labeling and tracking cells with gold nanoparticles. Drug Discov. Today 2021, 26, 94–105.

[3]

Wang, H.; Mooney, D. J. Metabolic glycan labelling for cancer-targeted therapy. Nat. Chem. 2020, 12, 1102–1114.

[4]

Li, Z. H.; Shen, D. L.; Hu, S. Q.; Su, T.; Huang, K.; Liu, F. R.; Hou, L.; Cheng, K. Pretargeting and bioorthogonal click chemistry-mediated endogenous stem cell homing for heart repair. ACS Nano 2018, 12, 12193–12200.

[5]

Meldal, M.; Diness, F. Recent fascinating aspects of the CuAAC click reaction. Trends Chem. 2020, 2, 569–584.

[6]

Hu, G. S.; Chen, J. J.; Fan, Y.; Zhou, H. Y.; Guo, K. Z.; Fang, Z.; Xie, L. X.; Wang, L.; Wang, Y. J. A promoted copper-catalysed azide-alkyne cycloaddition (CuAAC) for broad spectrum peptide-engineered implants. Chem. Eng. J. 2022, 427, 130918.

[7]

Zhang, R. X.; Chen, Y.; Ding, M. H.; Zhao, J. Heterogeneous Cu catalyst in organic transformations. Nano Res. 2022, 15, 2810–2833.

[8]

Kumar, R. A.; Pattanayak, M. R.; Yen-Pon, E.; Eliyan, J.; Porte, K.; Bernard, S.; Riomet, M.; Thuéry, P.; Audisio, D.; Taran, F. Strain-promoted 1, 3-dithiolium-4-olates-alkyne cycloaddition. Angew. Chem., Int. Ed. 2019, 131, 14686–14690.

[9]

Chen, J. F.; Li, K.; Bonson, S. E.; Zimmerman, S. C. A bioorthogonal small molecule selective polymeric “clickase”. J. Am. Chem. Soc. 2020, 142, 13966–13973.

[10]

Gao, Z. G.; Li, Y. J.; Liu, Z. K.; Zhang, Y.; Chen, F. H.; An, P. J.; Lu, W. J.; Hu, J. Z.; You, C. Q.; Xu, J. et al. Small-molecule-selective organosilica nanoreactors for copper-catalyzed azide-alkyne cycloaddition reactions in cellular and living systems. Nano Lett. 2021, 21, 3401–3409.

[11]

You, Y. W.; Cao, F. F.; Zhao, Y. J.; Deng, Q. Q.; Sang, Y. J.; Li, Y.; Dong, K.; Ren, J. S.; Qu, X. G. Near-infrared light dual-promoted heterogeneous copper nanocatalyst for highly efficient bioorthogonal chemistry in vivo. ACS Nano 2020, 14, 4178–4187.

[12]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[13]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[14]

Li, Y. W.; Higaki, T.; Du, X. S.; Jin, R. C. Chirality and surface bonding correlation in atomically precise metal nanoclusters. Adv. Mater. 2020, 32, 1905488.

[15]

Malola, S.; Häkkinen, H. Chiral footprint of the ligand layer in the all-alkynyl-protected gold nanocluster Au144(CCPhF)60. Chem. Commun. 2019, 55, 9460–9462.

[16]

Xiao, Y.; Wu, Z. N.; Yao, Q. F.; Xie, J. P. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate 2021, 2, 114–132.

[17]

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

[18]

Han, Z.; Dong, X. Y.; Luo, P.; Li, S.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107.

[19]

Gan, Z. B.; Liu, Y. G.; Wang, L.; Jiang, S. Q.; Xia, N.; Yan, Z. P.; Wu, X.; Zhang, J. R.; Gu, W. M.; He, L. Z. et al. Distance makes a difference in crystalline photoluminescence. Nat. Commun. 2020, 11, 5572.

[20]

Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

[21]

Su, Y.; Xue, T. T.; Liu, Y. X.; Qi, J. X.; Jin, R. C.; Lin, Z. K. Luminescent metal nanoclusters for biomedical applications. Nano Res. 2019, 12, 1251–1265.

[22]

Cai, X.; Hu, W. G.; Xu, S.; Yang, D.; Chen, M. Y.; Shu, M.; Si, R.; Ding, W. P.; Zhu, Y. Structural relaxation enabled by internal vacancy available in a 24-atom gold cluster reinforces catalytic reactivity. J. Am. Chem. Soc. 2020, 142, 4141–4153.

[23]

Qin, L. B.; Sun, F.; Ma, X. S.; Ma, G. Y.; Tang, Y.; Wang, L. K.; Tang, Q.; Jin, R. C.; Tang, Z. H. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: Structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem., Int. Ed. 2021, 133, 26340–26345.

[24]

Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.

[25]

Seong, H.; Efremov, V.; Park, G.; Kim, H.; Yoo, J. S.; Lee, D. Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 14563–14570.

[26]

Zhu, H. G.; Yuan, X.; Yao, Q. F.; Xie, J. P. Shining photocatalysis by gold-based nanomaterials. Nano Energy 2021, 88, 106306.

[27]

Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

[28]

Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.

[29]

Shang, L.; Xu, J.; Nienhaus, G. U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 2019, 28, 100767.

[30]

Chen, S.; Ma, H. D.; Padelford, J. W.; Qinchen, W.; Yu, W.; Wang, S. X.; Zhu, M. Z.; Wang, G. L. Near infrared electrochemiluminescence of rod-shape 25-atom AuAg nanoclusters that is hundreds-fold stronger than that of Ru(bpy)3 standard. J. Am. Chem. Soc. 2019, 141, 9603–9609.

[31]

Wang, Z. G.; Shi, Y. E.; Yang, X.; Xiong, Y.; Li, Y. X.; Chen, B. K.; Lai, W. F.; Rogach, A. L. Water-soluble biocompatible copolymer hypromellose grafted chitosan able to load exogenous agents and copper nanoclusters with aggregation-induced emission. Adv. Funct. Mater. 2018, 28, 1802848.

[32]

Pei, F.; Dai, S. Q.; Guo, B. F.; Xie, H.; Zhao, C. W.; Cui, J. Q.; Fang, X. L.; Chen, C. M.; Zheng, N. F. Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities. Energy Environ. Sci. 2021, 14, 975–985.

[33]

Song, Y. B.; Li, Y. W.; Zhou, M.; Liu, X.; Li, H.; Wang, H.; Shen, Y. H.; Zhu, M. Z.; Jin, R. C. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv. 2021, 7, eabd2091.

[34]

Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 2018, 13, 900–905.

[35]

Jiang, X. Y.; Zhou, Q. H.; Du, B. J.; Li, S. Q.; Huang, Y. Y.; Chi, Z. K.; Lee W., M.; Yu, M. X.; Zheng, J. Noninvasive monitoring of hepatic glutathione depletion through fluorescence imaging and blood testing. Sci. Adv. 2021, 7, eabd9847.

[36]

Lin, Z. K.; Goswami, N.; Xue, T. T.; Chai, O. J. H.; Xu, H. J.; Liu, Y.; Su, Y. X.; Xie, J. P. Engineering metal nanoclusters for targeted therapeutics: From targeting strategies to therapeutic applications. Adv. Funct. Mater. 2021, 31, 2105662.

[37]

Liu, H. L.; Hong, G. S.; Luo, Z. T.; Chen, J. C.; Chang, J. L.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L. L. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 2019, 31, 1901015.

[38]

Jiang, X. Y.; Du, B. J.; Zheng, J. Glutathione-mediated biotransformation in the liver modulates nanoparticle transport. Nat. Nanotechnol. 2019, 14, 874–882.

[39]

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 2018, 357, 1–17.

[40]

Song, X. R.; Zhu, W.; Ge, X. G.; Li, R. F.; Li, S. H.; Chen, X.; Song, J. B.; Xie, J. P.; Chen, X. Y.; Yang, H. H. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem., Int. Ed. 2021, 60, 1306–1312.

[41]

Fang, Y. P.; Bao, K.; Zhang, P.; Sheng, H. T.; Yun, Y. P.; Hu, S. X.; Astruc, D.; Zhu, M. Z. Insight into the mechanism of the CuAAC reaction by capturing the crucial Au4Cu4π-alkyne intermediate. J. Am. Chem. Soc. 2021, 143, 1768–1772.

[42]

Li, Y. L.; Wang, J.; Luo, P.; Ma, X. H.; Dong, X. Y.; Wang, Z. Y.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Cu14 cluster with partial Cu(0) character: Difference in electronic structure from isostructural silver analog. Adv. Sci. 2019, 6, 1900833.

[43]

Han, B. L.; Liu, Z.; Feng, L.; Wang, Z.; Gupta, R. K.; Aikens, C. M.; Tung, C. H.; Sun, D. Polymorphism in atomically precise Cu23 nanocluster incorporating tetrahedral [Cu4]0 kernel. J. Am. Chem. Soc. 2020, 142, 5834–5841.

[44]

Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114–3124.

[45]

Zhou, T. Y.; Zhu, J. Y.; Gong, L. S.; Nong, L. T.; Liu, J. B. Amphiphilic block copolymer-guided in situ fabrication of stable and highly controlled luminescent copper nanoassemblies. J. Am. Chem. Soc. 2019, 141, 2852–2856.

[46]

Zhang, X. L.; Wang, Z. P.; Qian, S. Y.; Liu, N. W.; Sui, L. N.; Yuan, X. Effect of subtle changes of isomeric ligands on the synthesis of atomically precise water-soluble gold nanoclusters. Nanoscale 2020, 12, 6449–6455.

[47]

Yao, Q. F.; Yuan, X.; Yu, Y.; Yu, Y.; Xie, J. P.; Lee, J. Y. Introducing amphiphilicity to noble metal nanoclusters via phase-transfer driven ion-pairing reaction. J. Am. Chem. Soc. 2015, 137, 2128–2136.

[48]

Cao, Y. T.; Liu, T. Y.; Chen, T. K.; Zhang, B. H.; Jiang, D. E.; Xie, J. P. Revealing the etching process of water-soluble Au25 nanoclusters at the molecular level. Nat. Commun. 2021, 12, 3212.

[49]

Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem. 2014, 126, 4711–4715.

[50]

Yuan, S. F.; Guan, Z. J.; Liu, W. D.; Wang, Q. M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun. 2019, 10, 4032.

[51]

Huang, R. W.; Yin, J.; Dong, C. W.; Maity, P.; Hedhili, M. N.; Nematulloev, S.; Alamer, B.; Ghosh, A.; Mohammed, O. F.; Bakr, O. M. [Cu23(PhSe)16(Ph3P)8(H)6]·BF4: Atomic-level insights into cuboidal polyhydrido copper nanoclusters and their quasi-simple cubic self-assembly. ACS Mater. Lett. 2021, 3, 90–99.

[52]

Wu, Z. K.; MacDonald, M. A.; Chen, J.; Zhang, P.; Jin, R. C. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J. Am. Chem. Soc. 2011, 133, 9670–9673.

[53]

Shi, Y. E.; Ma, J. Z.; Feng, A. R.; Wang, Z. G.; Rogach, A. L. Aggregation-induced emission of copper nanoclusters. Aggregate 2021, 2, e112.

[54]

Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.

[55]

Wang, S. X.; Song, Y. B.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X. M.; Chen, M.; Li, P.; Zhu, M. Z. Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. J. Am. Chem. Soc. 2015, 137, 4018–4021.

[56]

Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Li, H. Y.; Li, S. J.; Zhao, X. L.; Zang, S. Q. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem. 2020, 132, 10138–10144.

[57]

Kong, Y. J.; Yan, Z. P.; Li, S.; Su, H. F.; Li, K.; Zheng, Y. X.; Zang, S. Q. Photoresponsive propeller-like chiral AIE copper(I) clusters. Angew. Chem., Int. Ed. 2020, 59, 5336–5340.

[58]

Prasanth, T.; Chakraborti, G.; Mandal, T.; Ravichandiran, V.; Dash, J. Cycloaddition of N-sulfonyl and N-sulfamoyl azides with alkynes in aqueous media for the selective synthesis of 1,2,3-triazoles. Green Chem. 2022, 24, 911–915.

[59]

Chung, R.; Vo, A.; Fokin, V. V.; Hein, J. E. Catalyst activation, chemoselectivity, and reaction rate controlled by the counterion in the Cu(I)-catalyzed cycloaddition between azide and terminal or 1-iodoalkynes. ACS Catal. 2018, 8, 7889–7897.

Nano Research
Pages 1748-1754
Cite this article:
Yang G, Xie Y, Wang Y, et al. Water-soluble Cu30 nanoclusters as a click chemistry catalyst for living cell labeling via azide-alkyne cycloaddition. Nano Research, 2023, 16(1): 1748-1754. https://doi.org/10.1007/s12274-022-4821-5
Topics:

1562

Views

18

Crossref

15

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 08 May 2022
Revised: 03 July 2022
Accepted: 26 July 2022
Published: 10 August 2022
© Tsinghua University Press 2022
Return