AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Zero-oxidation state precursor assisted fabrication of highly dispersed and stable Pt catalyst for chemoselective hydrogenation of α,β-unsaturated aldehydes

Yu Liang1Mark Douthwaite2Xiaoyang Huang2Binbin Zhao1Qiong Tang1Lei Liu1( )Jinxiang Dong1
College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
Show Author Information

Graphical Abstract

Highly dispersed and stable Pt-based catalysts were developed by using Pt(0)-complex as the precursor through mild hydrogenation treatment. Pt/FeOx/SBA-15 exhibited markedly high catalytic performance and generality in the selective hydrogenation of α,β-unsaturated aldehydes.

Abstract

The chemoselective hydrogenation of α,β-unsaturated aldehydes is a key strategy for the synthesis of fine chemicals. Herein, we developed an efficient method of depositing Pt particles on FeOx/SBA-15. This strategy is dependent on using a platinum-divinyltetramethyldisiloxane complex (Pt0-DVTMS) as the precursor, which we demonstrate can be removed through a H2-treatment under mild conditions. This, in turn, allowed for the synthesis of catalysts with well dispersed Pt particles. The presence of FeOx species also aided Pt dispersion; when coated onto SBA-15, FeOx strongly interacted with dissociated Pt species, inhibiting both Pt aggregation and metal leaching. Using cinnamaldehyde as a model α,β-unsaturated aldehyde, it was demonstrated that this catalyst was highly selective towards the unsaturated alcohol and no obvious loss in activity was observed over five recycles. This catalyst was determined to be significantly more effective than an analogous catalyst prepared using chloroplatinic acid as a precursor, evidencing the importance of using the Pt0-DVTMS precursor. We corroborate the excellent catalytic performance to highly dispersed Pt-species, whereby Pt0 and Pt2+ play a critical role in activating H2 and the C=O bond. This research demonstrates that the Pt precursor can have a significant impact on the physicochemical properties and thus, the performance of the final catalyst. It also evidences how metal support interactions can dramatically influence selectivity in such hydrogenation reactions. This novel catalyst preparation protocol, using a DVTMS ligand for Pt impregnation, offers a facile approach to the design of multi-component heterogeneous catalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_4822_MOESM1_ESM.pdf (5.6 MB)

References

[1]

Lan, X. C.; Wang, T. F. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: A review. ACS Catal. 2020, 10, 2764–2790.

[2]

Luo, X. X.; Jian, Y. M.; Li, H. Low-temperature reduction of bio-based cinnamaldehyde to α,β-(un)saturated alcohols enabled by a waste-derived catalyst. Catal. Commun. 2022, 162, 106391.

[3]

Claus, P. Selective hydrogenation of ά, β-unsaturated aldehydes and other C=O and C=C bonds containing compounds. Top. Catal. 1998, 5, 51–62.

[4]

Youngs, T. G. A.; Manyar, H.; Bowron, D. T.; Gladden, L. F.; Hardacre, C. Probing chemistry and kinetics of reactions in heterogeneous catalysts. Chem. Sci. 2013, 4, 3484–3489.

[5]

Bachiller-Baeza, B.; Rodrı́guez-Ramos, I.; Guerrero-Ruiz, A. Influence of Mg and Ce addition to ruthenium based catalysts used in the selective hydrogenation of α,β-unsaturated aldehydes. Appl. Catal. A Gen. 2001, 205, 227–237.

[6]

Wang, X. F.; Liang, X. H.; Geng, P.; Li, Q. B. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catal. 2020, 10, 2395–2412.

[7]

Dietrich, C.; Schild, D.; Wang, W.; Kübel, C.; Behrens, S. Bimetallic Pt/Sn-based nanoparticles in ionic liquids as nanocatalysts for the selective hydrogenation of cinnamaldehyde. Z. Anorg. Allg. Chem. 2017, 643, 120–129.

[8]

Liu, Z.; Tan, X. L.; Li, J.; Lv, C. Easy synthesis of bimetal PtFe-containing ordered mesoporous carbons and their use as catalysts for selective cinnamaldehyde hydrogenation. New J. Chem. 2013, 37, 1350–1357.

[9]

Zheng, Q.; Wang, D.; Yuan, F. L.; Han, Q.; Dong, Y. L.; Liu, Y. F.; Niu, X. Y.; Zhu, Y. J. An effective co-promoted platinum of Co-Pt/SBA-15 catalyst for selective hydrogenation of Cinnamaldehyde to Cinnamyl alcohol. Catal. Lett. 2016, 146, 1535–1543.

[10]

Dai, Y. H.; Gao, X.; Chu, X. F.; Jiang, C. Y.; Yao, Y.; Guo, Z.; Zhou, C. M.; Wang, C.; Wang, H. M.; Yang, Y. H. On the role of water in selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on PtFe catalysts. J. Catal. 2018, 364, 192–203.

[11]

Vu, K. B.; Bukhryakov, K. V.; Anjum, D. H.; Rodionov, V. O. Surface-bound ligands modulate chemoselectivity and activity of a bimetallic nanoparticle catalyst. ACS Catal. 2015, 5, 2529–2533.

[12]

Yuan, K.; Song, T. Q.; Wang, D. W.; Zhang, X. T.; Gao, X.; Zou, Y.; Dong, H. L.; Tang, Z. Y.; Hu, W. P. Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro- and mesoporous polymers. Angew. Chem., Int. Ed. 2018, 57, 5708–5713.

[13]

Pan, H. Y.; Li, J. R.; Lu, J. Q.; Wang, G. M.; Xie, W. H.; Wu, P.; Li, X. H. Selective hydrogenation of cinnamaldehyde with PtFex/Al2O3@SBA-15 catalyst: Enhancement in activity and selectivity to unsaturated alcohol by Pt-FeOx and Pt-Al2O3@SBA-15 interaction. J. Catal. 2017, 354, 24–36.

[14]

Wei, Z. J.; Zhu, X. M.; Liu, X. S.; Xu, H. Q.; Li, X. H.; Hou, Y. X.; Liu, Y. X. Pt-Re/rGO bimetallic catalyst for highly selective hydrogenation of cinnamaldehyde to cinnamylalcohol. Chin. J. Chem. Eng. 2019, 27, 369–378.

[15]

Hu, Q. M.; Wang, S.; Gao, Z.; Li, Y. Q.; Zhang, Q.; Xiang, Q.; Qin, Y. The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde. Appl. Catal. B Environ. 2017, 218, 591–599.

[16]

He, S.; Xie, L. F.; Che, M. W.; Chan, H. C.; Yang, L. C.; Shi, Z. P.; Tang, Y.; Gao, Q. S. Chemoselective hydrogenation of α,β-unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles. J. Mol. Catal. A Chem. 2016, 425, 248–254.

[17]

Bhogeswararao, S.; Srinivas, D. Intramolecular selective hydrogenation of cinnamaldehyde over CeO2-ZrO2-supported Pt Catalysts. J. Catal. 2012, 285, 31–40.

[18]

Tamura, M.; Tokonami, K.; Nakagawa, Y.; Tomishige, K. Effective NbOx-modified Ir/SiO2 catalyst for selective gas-phase hydrogenation of crotonaldehyde to crotyl alcohol. ACS Sustainable Chem. Eng. 2017, 5, 3685–3697.

[19]

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

[20]

Zhao, F. Y.; Ikushima, Y.; Arai, M. Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: Effects of pressure, solvent, and metal particle size. J. Catal. 2004, 224, 479–483.

[21]

Bayram, E.; Lu, J.; Aydin, C.; Browning, N. D.; Özkar, S.; Finney, E.; Gates, B. C.; Finke, R. G. Agglomerative sintering of an atomically dispersed Ir1/zeolite Y catalyst: Compelling evidence against Ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps. ACS Catal. 2015, 5, 3514–3527.

[22]

Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

[23]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Tao, Z. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[24]

Nguyen, L.; Zhang, S. R.; Wang, L.; Li, Y. Y.; Yoshida, H.; Patlolla, A.; Takeda, S.; Frenkel, A. I.; Tao, F. Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS Catal. 2016, 6, 840–850.

[25]

Ida, S.; Kim, N.; Ertekin, E.; Takenaka, S.; Ishihara, T. Photocatalytic reaction centers in two-dimensional titanium oxide crystals. J. Am. Chem. Soc. 2015, 137, 239–244.

[26]

Wang, J.; Zhao, X. C.; Lei, N.; Li, L.; Zhang, L. L.; Xu, S. T.; Miao, S.; Pan, X. L.; Wang, A. Q.; Zhang, T. Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WOx-supported single/pseudo-single atom Pt catalyst. ChemSusChem 2016, 9, 784–790.

[27]

Forde, M. M.; Kesavan, L.; Bin Saiman, M. I.; He, Q.; Dimitratos, N.; Lopez-Sanchez, J. A.; Jenkins, R. L.; Taylor, S. H.; Kiely, C. J., Hutchings, G. J. High activity redox catalysts synthesized by chemical vapor impregnation. ACS Nano 2014, 8, 957–969.

[28]

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

[29]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q, Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[30]

Ketelson, H. A.; Brook, M. A.; Pelton, R.; Heng, Y. M. Hydridosilsesquioxane modified silica-supported platinum nanoparticles. Chem. Mater. 1996, 8, 2195–2199.

[31]

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

[32]

Maimaiti, Y.; Elliott, S. D. Kinetics and coverage dependent reaction mechanisms of the copper atomic layer deposition from copper dimethylamino-2-propoxide and diethylzinc. Chem. Mater. 2016, 28, 6282–6295.

[33]

Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1775.

[34]

Huang, X. H.; Xia, Y. J.; Cao, Y. J.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Ma, C.; Wang, H. W.; Li, J. J.; You, R. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 2017, 10, 1302–1312.

[35]

Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.

[36]

Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.

[37]

Lu, J.; Aydin, C.; Browning, N. D.; Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. 2012, 124, 5944–5948.

[38]

Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730.

[39]

Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1, 3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

[40]

Iimura, T.; Akasaka, N.; Kosai, T.; Iwamoto, T. A Pt(0) complex with cyclic (alkyl)(amino) silylene and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane ligands: Synthesis, molecular structure, and catalytic hydrosilylation activity. Dalton Trans. 2017, 46, 8868–8874.

[41]

Impéror-Clerc, M.; Davidson, P.; Davidson, A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. J. Am. Chem. Soc. 2000, 122, 11925–11933.

[42]

Wang, C.; Huang, Z. X. Controlled synthesis of α-Fe2O3 nanostructures for efficient photocatalysis. Mater. Lett. 2016, 164, 194–197.

[43]

He, X. H.; Deng, Y. C.; Zhang, Y.; He, Q.; Xiao, D. Q.; Peng, M.; Zhao, Y.; Zhang, H.; Luo, R. C.; Gan, T. et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts. Cell Rep. Phys. Sci. 2020, 1, 100004.

[44]

Xue, Y. J.; Yao, R. H.; Li, J. R.; Wang, G. M.; Wu, P.; Li, X. H. Efficient Pt-FeOx/TiO2@SBA-15 catalysts for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Catal. Sci. Technol. 2017, 7, 6112–6123.

[45]

Lewis, L. N.; Colborn, R. E.; Grade, H.; Bryant, G. L.; Sumpter, C. A.; Scott, R. A. Mechanism of formation of platinum(0) complexes containing silicon-vinyl ligands. Organometallics 1995, 14, 2202–2213.

[46]

Li, Y.; Zhu, P. F.; Zhou, R. X. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with carbon nanotubes supported Pt-Co catalysts. Appl. Surf. Sci. 2008, 254, 2609–2614.

[47]

Sermon, P. A.; Bond, G. C. Hydrogen spillover. Catal. Rev. 1974, 8, 211–239.

[48]

Liu, T.; Zeng, X. R.; Lai, X. J.; Li, H. Q. Efficient organic-to-inorganic conversion of polysiloxane by novel platinum-thiol catalytic system. Polym. Degrad. Stab. 2020, 176, 109161.

[49]

Iida, H.; Igarashi, A. Characterization of a Pt/TiO2 (rutile) catalyst for water gas shift reaction at low-temperature. Appl. Catal. A Gen. 2006, 298, 152–160.

[50]

Thang, H. V.; Pacchioni, G.; DeRita, L.; Christopher, P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J. Catal. 2018, 367, 104–114.

[51]

Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189–192.

[52]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[53]

Tang, H. L.; Su, Y.; Zhang, B. S.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y. G.; Huang, J. H.; Haruta, M. et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231.

[54]

Kim, M. J.; Lee, M. W.; Lee, K. Y. Improved catalytic wet peroxide oxidation of phenol over Pt-Fe2O3/SBA-15: Influence of platinum species and DFT calculations. Appl. Surf. Sci. 2021, 541, 148409.

[55]

Navas-Cárdenas, C.; Benito, N.; Wolf, E. E.; Gracia, F. Tuning activity of Pt/FeOx/TiO2 catalysts synthesized through selective-electrostatic adsorption for hydrogen purification by prox reaction. Int. J. Hydrogen Energy 2022, 47, 20867–20880.

[56]

Yuan, T.; Liu, D. R.; Pan, Y.; Pu, X. Q.; Xia, Y. D.; Wang, J. B.; Xiong, W. Magnetic anchored CoPt bimetallic nanoparticles as selective hydrogenation catalyst for cinnamaldehyde. Catal. Lett. 2019, 149, 851–859.

[57]

Shi, Y. S.; Yuan, Z. F.; Wei, Q.; Sun, K. Q.; Xu, B. Q. Pt-FeOx/SiO2 catalysts prepared by galvanic displacement show high selectivity for cinnamyl alcohol production in the chemoselective hydrogenation of cinnamaldehyde. Catal. Sci. Technol. 2016, 6, 7033–7037.

[58]

Xin, H. Y.; Zhang, W. B.; Xiao, X. X.; Chen, L.; Wu, P.; Li, X. H. Selective hydrogenation of cinnamaldehyde with NixFe1−xAl2O4+δ composite oxides supported Pt catalysts: C=O versus C=C selectivity switch by varying the Ni/Fe molar ratios. J. Catal. 2021, 393, 129–136.

[59]

Shu, Y. J.; Chen, T.; Chan, H. C.; Xie, L. F.; Gao, Q. S. Chemoselective hydrogenation of cinnamaldehyde on iron-oxide modified Pt/MoO3−y Catalysts. Chem. Asian J. 2018, 13, 3737–3744.

[60]

Yao, R. H.; Li, J. R.; Wu, P.; Li, X. H. The superior performance of a Pt catalyst supported on nanoporous SiC-C composites for liquid-phase selective hydrogenation of cinnamaldehyde. RSC Adv. 2016, 6, 81211–81218.

[61]

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

[62]

Li, L. C.; Wei, W.; Wang, W; Wang, X. L.; Zhang, L.; Tian, A. M. Selective hydrogenation of cinnamaldehyde catalyzed by Co-doped Pt clusters: A density functional theoretical study. RSC Adv. 2016, 6, 88277–88286.

[63]

Pozdnyakova, O.; Teschner, D.; Wootsch, A.; Kröhnert, J.; Steinhauer, B.; Sauer, H.; Toth, L.; Jentoft, F. C.; Knop-Gericke, A.; Paál, Z. et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions. J. Catal. 2006, 237, 1–16.

Nano Research
Pages 6085-6093
Cite this article:
Liang Y, Douthwaite M, Huang X, et al. Zero-oxidation state precursor assisted fabrication of highly dispersed and stable Pt catalyst for chemoselective hydrogenation of α,β-unsaturated aldehydes. Nano Research, 2023, 16(5): 6085-6093. https://doi.org/10.1007/s12274-022-4822-4
Topics:
Part of a topical collection:

1350

Views

7

Crossref

6

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 20 May 2022
Revised: 11 July 2022
Accepted: 26 July 2022
Published: 27 August 2022
© Tsinghua University Press 2022
Return