AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosting photocatalytic hydrogen production via interfacial engineering over a Z-scheme core/shell heterojunction

Bing Luo1Jinghua Li2Wei Wang1Chaoqian Ai2Haihan Zhang1Yuxin Zhao1( )Dengwei Jing2( )
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

A noble-metal-free core/shell photocatalyst was prepared for H2 production. The interfacial electric field and redox shuttles synergistically strengthened the charge carriers transfer, thus notably improving the H2 production.

Abstract

Designing high efficacy photocatalysts is a promising way to improve solar fuel production efficiency. In this work, we prepared a core/shell composite of loose ZnCr layered double hydroxide nanosheets modified CdS nanorods for efficient visible light driven photocatalytic hydrogen production. The highest hydrogen production rate achieved 425.8 μmol·h−1 without adding any noble metal cocatalyst under the visible light stimulus, which is 22.4 times that of 1 wt.% Pt-modified CdS. The corresponding apparent quantum yield is 13.9% at 420 nm. It is revealed that the synergistic actions of the interfacial redox shuttle of Cr3+/Crδ+ and the interfacial electric field enable the efficient separation of photoinduced charge carriers between two components via a Z-scheme energy band configuration. Meanwhile, with the hydrogen evolution contribution of Zn2+, a remarkable improvement in photocatalytic performance was achieved in contrast to bare CdS. This work provides an effective methodology to construct highly efficient and economically viable photocatalysts for solar H2 production and mechanistic study.

Electronic Supplementary Material

Download File(s)
12274_2022_4825_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

[2]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[3]

Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801.

[4]

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

[5]

Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

[6]

Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611–615.

[7]

Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

[8]

Shen, R. C.; Ren, D. D.; Ding, Y. N.; Guan, Y. T.; Ng, Y. H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci. China Mater. 2020, 63, 2153–2188.

[9]
Yu, J. G.; Yu, Y. F.; Zhou, P.; Xiao, W.; Cheng, B. Morphology-dependent photocatalytic H2-production activity of CdS. Appl. Catal. B: Environ. 2014, 156–157, 184–191.
[10]

Li, Q.; Shi, T.; Li, X.; Lv, K. L.; Li, M.; Liu, F. L.; Li, H. Y.; Lei, M. Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production. Appl. Catal. B: Environ. 2018, 229, 8–14.

[11]

Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676.

[12]

Yuan, J. L.; Wen, J. Q.; Gao, Q. Z.; Chen, S. C.; Li, J. M.; Li, X.; Fang, Y. P. Amorphous Co3O4 modified CdS nanorods with enhanced visible-light photocatalytic H2-production activity. Dalton Trans. 2015, 44, 1680–1689.

[13]

Jin, J.; Yu, J. G.; Liu, G.; Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J. Mater. Chem. A 2013, 1, 10927–10934.

[14]

Wang, P.; Sheng, Y.; Wang, F. Z.; Yu, H. G. Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2-evolution performance: A case study of CdS-Au photocatalyst. Appl. Catal. B: Environ. 2018, 220, 561–569.

[15]

Wang, H. M.; Naghadeh, S. B.; Li, C. H.; Ying, L.; Allen, A. L.; Zhang, J. Z. Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets. Sci. China Mater. 2018, 61, 839–850.

[16]

Liu, M. C.; Chen, Y. B.; Su, J. Z.; Shi, J. W.; Wang, X. X.; Guo, L. J. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 2016, 1, 16151.

[17]

Zhao, G. X.; Sun, Y. B.; Zhou, W.; Wang, X. K.; Chang, K.; Liu, G. G.; Liu, H. M.; Kako, T.; Ye, J. H. Superior photocatalytic H2 production with cocatalytic Co/Ni species anchored on sulfide semiconductor. Adv. Mater. 2017, 29, 1703258.

[18]

Qiu, B. C.; Zhu, Q. H.; Du, M. M.; Fan, L. G.; Xing, M. Y.; Zhang, J. L. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem., Int. Ed. 2017, 56, 2684–2688.

[19]

Zong, X.; Han, J. F.; Ma, G. J.; Yan, H. J.; Wu, G. P.; Li, C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J. Phys. Chem. C 2011, 115, 12202–12208.

[20]

Han, G. Q.; Jin, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.; Sun, Y. J. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587.

[21]

Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y. X.; Kuno, M. Efficient photocatalytic hydrogen generation from Ni nanoparticle decorated CdS nanosheets. ACS Catal. 2015, 5, 6615–6623.

[22]

Dong, Y. M.; Kong, L. G.; Wang, G. L.; Jiang, P. P.; Zhao, N.; Zhang, H. Z. Photochemical synthesis of CoxP as cocatalyst for boosting photocatalytic H2 production via spatial charge separation. Appl. Catal. B: Environ. 2017, 211, 245–251.

[23]

Yu, H. G.; Xu, J. C.; Gao, D. D.; Fan, J. J.; Yu, J. G. Triethanolamine-mediated photodeposition formation of amorphous Ni-P alloy for improved H2-evolution activity of g-C3N4. Sci. China Mater. 2020, 63, 2215–2227.

[24]

Deng, C. H.; Ye, F.; Wang, T.; Ling, X. H.; Peng, L. L.; Yu, H.; Ding, K. Z.; Hu, H. M.; Dong, Q.; Le, H. R. et al. Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation. Nano Res. 2022, 15, 2003–2012.

[25]

Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 2016, 6, 1501974.

[26]

Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

[27]

Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci. 2016, 9, 1734–1743.

[28]

Dresp, S.; Thanh, T. N.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729.

[29]

Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

[30]

Chen, G. B.; Gao, R.; Zhao, Y. F.; Li, Z. H.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Zhang, M. T.; Shang, L.; Sheng, G. Y. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 2018, 30, 1704663.

[31]

Bian, X. A.; Zhang, S.; Zhao, Y. X.; Shi, R.; Zhang, T. R. Layered double hydroxide-based photocatalytic materials toward renewable solar fuels production. InfoMat 2021, 3, 719–738.

[32]

Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 14, 4828–4832.

[33]

Silva, C. G.; Bouizi, Y.; Fornés, V.; García, H. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J. Am. Chem. Soc. 2009, 131, 13833–13839.

[34]

Gunjakar, J. L.; Kim, T. W.; Kim, H. N.; Kim, I. Y.; Hwang, S. J. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: Highly active visible light photocatalysts with improved chemical stability. J. Am. Chem. Soc. 2011, 133, 14998–15007.

[35]

Gunjakar, J. L.; Kim, I. Y.; Lee, J. M.; Lee, N. S.; Hwang, S. J. Self-assembly of layered double hydroxide 2D nanoplates with graphene nanosheets: An effective way to improve the photocatalytic activity of 2D nanostructured materials for visible light-induced O2 generation. Energy Environ. Sci. 2013, 6, 1008–1017.

[36]

Dou, Y. B.; Zhang, S. T.; Pan, T.; Xu, S. M.; Zhou, A.; Pu, M.; Yan, H.; Han, J. B.; Wei, M.; Evans, D. G. et al. TiO2@layered double hydroxide core–shell nanospheres with largely enhanced photocatalytic activity toward O2 generation. Adv. Funct. Mater. 2015, 25, 2243–2249.

[37]

Sun, Z. J.; Lv, B. H.; Li, J. S.; Xiao, M.; Wang, X. Y.; Du, P. W. Core-shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light. J. Mater. Chem. A 2016, 4, 1598–1602.

[38]

Zhang, J.; Qiao, S. Z.; Qi, L. F.; Yu, J. G. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys. Chem. Chem. Phys. 2013, 15, 12088–12094.

[39]

Roussel, H.; Briois, V.; Elkaim, E.; De Roy, A.; Besse, J. P.; Jolivet, J. P. Study of the formation of the layered double hydroxide [Zn-Cr-Cl]. Chem. Mater. 2001, 13, 329–337.

[40]

Luo, B.; Song, R.; Jing, D. W. ZnCr LDH nanosheets modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2017, 42, 23427–23436.

[41]

Fu, Y.; Ning, F. Y.; Xu, S. M.; An, H. L.; Shao, M. F.; Wei, M. Terbium doped ZnCr-layered double hydroxides with largely enhanced visible light photocatalytic performance. J. Mater. Chem. A 2016, 4, 3907–3913.

[42]

Wang, Y. B.; Wang, Y. S.; Xu, R. Photochemical deposition of Pt on CdS for H2 evolution from water: Markedly enhanced activity by controlling Pt reduction environment. J. Phys. Chem. C 2013, 117, 783–790.

[43]

Wang, Z. Q.; Qi, Z. L.; Fan, X. J.; Leung, D. Y. C.; Long, J. L.; Zhang, Z. Z.; Miao, T. F.; Meng, S. G.; Chen, S. F.; Fu, X. L. Intimately contacted Ni2P on CdS nanorods for highly efficient photocatalytic H2 evolution: New phosphidation route and the interfacial separation mechanism of charge carriers. Appl. Catal. B: Environ. 2021, 281, 119443.

[44]

Mancipe, S.; Tzompantzi, F.; Gómez, R. Synthesis of CdS/MgAl layered double hydroxides for hydrogen production from methanol-water decomposition. Appl. Clay Sci. 2017, 136, 67–74.

[45]

Lee, J. M.; Gunjakar, J. L.; Ham, Y.; Kim, I. Y.; Domen, K.; Hwang, S. J. A linker-mediated self-assembly method to couple isocharged nanostructures: Layered double hydroxide-CdS nanohybrids with high activity for visible-light-induced H2 generation. Chem. -Eur. J. 2014, 20, 17004–17010.

[46]

Zhang, G. H.; Lin, B. Z.; Yang, W. W.; Jiang, S. F.; Yao, Q. R.; Chen, Y. L.; Gao, B. F. Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer. RSC Adv. 2015, 5, 5823–5829.

[47]

Li, S. S.; Wang, L.; Li, Y. D.; Zhang, L. H.; Wang, A. X.; Xiao, N.; Gao, Y. Q.; Li, N.; Song, W. Y.; Ge, L. et al. Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Appl. Catal. B: Environ. 2019, 254, 145–155.

[48]

Zhou, H. L.; Song, Y. X.; Liu, Y. C.; Li, H. D.; Li, W. J.; Chang, Z. D. Fabrication of CdS/Ni-Fe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution. Int. J. Hydrogen Energy 2018, 43, 14328–14336.

[49]

Yang, M. X.; Wang, K.; Jin, Z. L. Pyramidal CdS polyhedron modified with NiAl LDH to form S-scheme heterojunction for efficient photocatalytic hydrogen evolution. ChemCatChem 2021, 13, 3525–3535.

[50]

Yang, M. X.; Wang, K.; Li, Y. B.; Yang, K. C.; Jin, Z. L. Pristine hexagonal CdS assembled with NiV LDH nanosheet formed p-n heterojunction for efficient photocatalytic hydrogen evolution. Appl. Surf. Sci. 2021, 548, 149212.

[51]

Lee, H.; Reddy, D. A.; Kim, Y.; Chun, S. Y.; Ma, R.; Kumar, D. P.; Song, J. K.; Kim, T. K. Drastic improvement of 1D-CdS solar-driven photocatalytic hydrogen evolution rate by integrating with NiFe layered double hydroxide nanosheets synthesized by liquid-phase pulsed-laser ablation. ACS Sustainable Chem. Eng. 2018, 6, 16734–16743.

[52]

Soldat, J.; Busser, G. W.; Muhler, M.; Wark, M. Cr2O3 nanoparticles on Ba5Ta4O15 as a noble-metal-free oxygen evolution co-catalyst for photocatalytic overall water splitting. ChemCatChem 2016, 8, 153–156.

[53]

Zhao, Y. F.; Zhang, S. T.; Li, B.; Yan, H.; He, S.; Tian, L.; Shi, W. Y.; Ma, J.; Wei, M.; Evans, D. G. et al. A family of visible-light responsive photocatalysts obtained by dispersing CrO6 octahedra into a hydrotalcite matrix. Chem. -Eur. J. 2011, 17, 13175–13181.

[54]

Cheon, J. Y.; Kim, J. H.; Kim, J. H.; Goddeti, K. C.; Park, J. Y.; Joo, S. H. Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons. J. Am. Chem. Soc. 2014, 136, 8875–8878.

[55]

Fu, L.; Zhou, J.; Zhou, L. K.; Yang, J. M.; Liu, Z. R.; Wu, K.; Zhao, H. F.; Wang, J. K.; Wu, K. Facile fabrication of exsolved nanoparticle-decorated hollow ferrite fibers as active electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129422.

[56]

Zhang, M. Y.; Hu, Q. Y.; Ma, K. W.; Ding, Y.; Li, C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy 2020, 73, 104810.

[57]

Xiao, R.; Zhao, C. X.; Zou, Z. Y.; Chen, Z. P.; Tian, L.; Xu, H. T.; Tang, H.; Liu, Q. Q.; Lin, Z. X.; Yang, X. F. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 268, 118382.

[58]

Wang, C.; Ma, B.; Xu, S. M.; Li, D. P.; He, S.; Zhao, Y. F.; Han, J. B.; Wei, M.; Evans, D. G.; Duan, X. Visible-light-driven overall water splitting with a largely-enhanced efficiency over a Cu2O@ZnCr-layered double hydroxide photocatalyst. Nano Energy 2017, 32, 463–469.

[59]

Xia, S. J.; Qian, M. D.; Zhou, X. B.; Meng, Y.; Xue, J. L.; Ni, Z. M. Theoretical and experimental investigation into the photocatalytic degradation of hexachlorobenzene by ZnCr layered double hydroxides with different anions. Mol. Catal. 2017, 435, 118–127.

Nano Research
Pages 352-359
Cite this article:
Luo B, Li J, Wang W, et al. Boosting photocatalytic hydrogen production via interfacial engineering over a Z-scheme core/shell heterojunction. Nano Research, 2023, 16(1): 352-359. https://doi.org/10.1007/s12274-022-4825-1
Topics:

1137

Views

9

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 28 June 2022
Revised: 14 July 2022
Accepted: 26 July 2022
Published: 02 September 2022
© Tsinghua University Press 2022
Return