AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuning photocatalytic performance of Cs3Bi2Br9 perovskite by g-C3N4 for C(sp3)–H bond activation

Zhang-Jun Bai1,§Yu Mao1,§Bing-Hao Wang1Lang Chen1( )Sheng Tian1Biao Hu1You-Ji Li2Chak-Tong Au3Shuang-Feng Yin1( )
Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province, Jishou University, Jishou 416000, China
College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China

§ Zhang-Jun Bai and Yu Mao contributed equally to this work.

Show Author Information

Graphical Abstract

A 2D/2D (2D: two-dimensional) heterojunction of lead-free Cs3Bi2Br9/g-C3N4 composite was prepared by an electrostatic self-assembly technique for photocatalytic toluene activation. The introduction of g-C3N4 nanosheets endows Cs3Bi2Br9 with enhanced activity, stability, and benzaldehyde selectivity by boosting the generation of carbon centered radicals, reducing its surface energy, and changing the reaction pathway for benzaldehyde, respectively.

Abstract

All-inorganic halide perovskite (IHP) has been deemed promising in photocatalysis due to tunable bandgap and long lifetime of charge carriers. However, unsatisfactory photocatalytic activity and low stability prevent its practical applications. Rational construction of heterojunctions has been proved to be an efficient way to circumvent these obstacles. Herein, g-C3N4 nanosheet was employed to construct a 2D/2D (2D: two-dimensional) heterostructure with Cs3Bi2Br9 through an electrostatic self-assembly process. Owing to the efficient transfer of photogenerated charge carriers, the activity of Cs3Bi2Br9 was boosted with enhanced generation of carbon centered radicals. The optimized 10% Cs3Bi2Br9/g-C3N4 composite displays the highest benzaldehyde formation rate of 4.53 mmol·h−1·g−1 under visible light, which is 41.8 and 2.3 times that of individual g-C3N4 and Cs3Bi2Br9, respectively. The stability of Cs3Bi2Br9 nanosheets and its selectivity for benzaldehyde (from 65% of Cs3Bi2Br9 to 90% of the composite) was enhanced by reducing its surface energy and tuning the reaction pathway, respectively.

Electronic Supplementary Material

Download File(s)
12274_2022_4835_MOESM1_ESM.pdf (3.6 MB)

References

[1]

Kesavan, L.; Tiruvalam, R.; Ab Rahim, M. H.; Bin Saiman, M. I.; Enache, D. I.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Taylor, S. H.; Knight, D. W. et al. Solvent-free oxidation of primary carbon−hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 2011, 331, 195–199.

[2]

He, C. H.; Yu, L. L.; Lu, N.; Wang, W. J.; Chen, W.; Lu, S. J.; Yang, Y.; Ma, D. K.; Huang, S. M. Screwdriver-like Pd−Ag heterostructures formed via selective deposition of Ag on Pd nanowires as efficient photocatalysts for solvent-free aerobic oxidation of toluene. Nano Res. 2020, 13, 646–652.

[3]

Hou, T. T.; Gao, Z. Y.; Zhang, J.; Luo, N. C.; Wang, F. Simultaneously enhanced activity and selectivity for C(sp3)–H bond oxidation under visible light by nitrogen doping. Trans. Tianjin Univ. 2021, 27, 331–337.

[4]

Xia, B. Q.; Zhang, Y. Z.; Shi, B. Y.; Ran, J. R.; Davey, K.; Qiao, S. Z. Photocatalysts for hydrogen evolution coupled with production of value-added chemicals. Small Methods 2020, 4, 2000063.

[5]

Coperet, C. C–H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. Chem. Rev. 2010, 110, 656–680.

[6]

Li, Z. J.; Di, M. H.; Wei, W.; Leng, L. P.; Li, Z. J.; He, C.; Tan, Q.; Xu, Q.; Horton, J. H.; Li, L. et al. Alkali ion-promoted palladium subnanoclusters stabilized on porous alumina nanosheets with enhanced catalytic activity for benzene oxidation. Nano Res. 2022, 15, 5912–5921.

[7]

Cao, X.; Chen, Z.; Lin, R.; Cheong, W. C.; Liu, S. J.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. J. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene. Nat. Catal. 2018, 1, 704–710.

[8]

Yu, B.; Zhang, S. M.; Wang, X. Helical microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene. Angew. Chem., Int. Ed. 2021, 60, 17404–17409.

[9]

Tan, Y. X.; Chai, Z. M.; Wang, B. H.; Tian, S.; Deng, X. X.; Bai, Z. J.; Chen, L.; Shen, S.; Guo, J. K.; Cai, M. Q. et al. Boosted photocatalytic oxidation of toluene into benzaldehyde on CdIn2S4-CdS: Synergetic effect of compact heterojunction and S-vacancy. ACS Catal. 2021, 11, 2492–2503.

[10]

Zhang, Z. Z.; Yang, Y. Y.; Wang, Y. Y.; Yang, L. L.; Li, Q.; Chen, L. X.; Xu, D. S. Revealing the A-site effect of lead-free A3Sb2Br9 perovskite in photocatalytic C(sp3)–H bond activation. Angew. Chem., Int. Ed. 2020, 59, 18136–18139.

[11]

Bai, Z. J.; Tan, X. P.; Chen, L.; Hu, B.; Tan, Y. X.; Mao, Y.; Shen, S.; Guo, J. K.; Au, C. T.; Liang, Z. W. et al. Efficient photocatalytic toluene selective oxidation over Cs3Bi1.8Sb0.2Br9 nanosheets: Enhanced charge carriers generation and C–H bond dissociation. Chem. Eng. Sci. 2022, 247, 116983.

[12]

Zhao, S.; Liang, Q.; Li, Z. Y.; Shi, H.; Wu, Z. Y.; Huang, H.; Kang, Z. H. Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction. Nano Res. 2022, 15, 5953–5961.

[13]

Guan, Z. H.; Wu, Y. Q.; Wang, P.; Zhang, Q. Q.; Wang, Z. Y.; Zheng, Z. K.; Liu, Y. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Perovskite photocatalyst CsPbBr3−xIx with a bandgap funnel structure for H2 evolution under visible light. Appl. Catal. B: Environ. 2019, 245, 522–527.

[14]

Yu, W. J.; Sun, X. R.; Xiao, M.; Hou, T.; Liu, X.; Zheng, B. L.; Yu, H.; Zhang, M.; Huang, Y. L.; Hao, X. J. Recent advances on interface engineering of perovskite solar cells. Nano Res. 2022, 15, 85–103.

[15]

Wang, F. Y.; Yang, M. F.; Zhang, Y. H.; Du, J. Y.; Yang, S.; Yang, L. L.; Fan, L.; Sui, Y. R.; Sun, Y. F.; Yang, J. H. Full-scale chemical and field-effect passivation: 21.52% efficiency of stable MAPbI3 solar cells via benzenamine modification. Nano Res. 2021, 14, 2783–2789.

[16]

Song, W. T.; Wang, Y. M.; Wang, B.; Yao, Y. F.; Wang, W. G.; Wu, J. H.; Shen, Q.; Luo, W. J.; Zou. Z. G. Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Res. 2020, 13, 795–801.

[17]

Ou, M.; Tu, W. G.; Yin, S. M.; Xing, W. N.; Wu, S. Y.; Wang, H. J.; Wan, S. P.; Zhong, Q.; Xu, R. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 13570–13574.

[18]

Yang, H. J.; Cai, T.; Liu, E. X.; Hills-Kimball, K.; Gao, J. B.; Chen O. Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals. Nano Res. 2020, 13, 282–291.

[19]

Dai, Y. T.; Poidevin, C.; Ochoa-Hernández, C.; Auer, A. A.; Tüysüz, H. A supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic C–H bond activation. Angew. Chem., Int. Ed. 2020, 59, 5788–5796.

[20]

Dai, Y. T.; Tüysüz, H. Rapid acidic media growth of Cs3Bi2Br9 halide perovskite platelets for photocatalytic toluene oxidation. Sol. RRL 2021, 5, 2100265.

[21]

Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem., Int. Ed. 2021, 60, 1433–1440.

[22]

Xin, Z. K.; Gao, Y. J.; Gao, Y. Y.; Song, H. W.; Zhao, J. Q.; Fan, F. T.; Xia, A. D.; Li, X. B.; Tung, C. H.; Wu, L. Z. Rational design of dot-on-rod nano-heterostructure for photocatalytic CO2 reduction: Pivotal role of hole transfer and utilization. Adv. Mater. 2022, 34, 2106662.

[23]

Leng, M. Y.; Chen, Z. W.; Yang, Y.; Li, Z.; Zeng, K.; Li, K. H.; Niu, G. D.; He, Y. S.; Zhou, Q. C.; Tang, J. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew. Chem., Int. Ed. 2016, 55, 15012–15016.

[24]

Liu, Y. J.; Gao, Y. X.; Zhi, J. Y.; Huang, R. Q.; Li, W. J.; Huang, X. Y.; Yan, G. H.; Ji, Z.; Mai, W. J. All-inorganic lead-free NiOx/Cs3Bi2Br9 perovskite heterojunction photodetectors for ultraviolet multispectral imaging. Nano Res. 2022, 15, 1094–1101.

[25]

Zhang, Y.; Zhao, S. M.; Su, Q. W.; Xu, J. L. Visible light response ZnO-C3N4 thin film photocatalyst. Rare Metals 2021, 40, 96–104.

[26]

Sun, G. C.; Zhang, F. Z.; Xie, Q. S.; Luo, W.; Yang, J. P. Regulating ambient pressure approach to graphitic carbon nitride towards dispersive layers and rich pyridinic nitrogen. Chin. Chem Lett. 2020, 31, 1603–1607.

[27]

Ding, M. Y.; Xiao, R.; Zhao, C. X.; Bukhvalov, D.; Chen, Z. P.; Xu, H. T.; Tang, H.; Xu, J. S.; Yang, X. F. Evidencing interfacial charge transfer in 2D CdS/2D MXene Schottky heterojunctions toward high-efficiency photocatalytic hydrogen production. Sol. RRL 2021, 5, 2000414.

[28]

Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

[29]

Lou, Y. B.; Fang, M. Y.; Chen, J. X.; Zhao, Y. X. Formation of highly luminescent cesium bismuth halide perovskite quantum dots tuned by anion exchange. Chem. Commun. 2018, 54, 3779–3782.

[30]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[31]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[32]

Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

[33]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[34]

Zhou, B. X.; Ding, S. S.; Zhang, B. J.; Xu, L.; Chen, R. S.; Luo, L.; Huang, W. Q.; Xie, Z.; Pan, A. L.; Huang, G. F. Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: From 3D to 2D and 1D nanostructures. Appl. Catal. B: Environ. 2019, 254, 321–328.

[35]

Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu. J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

[36]

Ummadisingu, A.; Steier, L.; Seo, J. Y.; Matsui, T.; Abate, A.; Tress, W.; Grätzel, M. The effect of illumination on the formation of metal halide perovskite films. Nature 2017, 545, 208–212.

[37]

Li, B.; Zhang, Y. N.; Fu, L.; Yu, T.; Zhou, S. J.; Zhang, L. Y.; Yin, L. W. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 2018, 9, 1076.

[38]

Low, J.; Dai, B. Z.; Tong, T.; Jiang, C. J.; Yu, J. G. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981.

[39]

Wang, S. B.; Guan, B. Y.; Wang, X.; Lou, X. W. D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148.

[40]

Zhu, Y. J.; Wang, B. H.; Wang, H. Y.; Liu, X. L.; Licht, S. Towards efficient solar STEP synthesis of benzoic acid: Role of graphite electrode. Sol. Energy 2015, 113, 303–312.

[41]

Li, Q. L.; Song, T.; Zhang, Y. P.; Wang, Q.; Yang, Y. Boosting photocatalytic activity and stability of lead-free Cs3Bi2Br9 perovskite nanocrystals via in situ growth on monolayer 2D Ti3C2Tx MXene for C–H bond oxidation. ACS Appl. Mater. Interfaces 2021, 13, 27323–27333.

[42]

Jiang, Y.; Liao, J. F.; Chen, H. Y.; Zhang, H. H.; Li, J. Y.; Wang, X. D.; Kuang, D. B. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem 2020, 6, 766–780.

[43]

Huang, H. W.; Yuan, H. F.; Janssen, K. P. F.; Solís-Fernández, G.; Wang, Y.; Tan, C. Y. X.; Jonckheere, D.; Debroye, E.; Long, J. L.; Hendrix, J. et al. Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic–inorganic perovskite materials. ACS Energy Lett. 2018, 3, 755–759.

[44]

Zhang, Z. Z.; Liang, Y. Q.; Huang, H. L.; Liu, X. Y.; Li, Q.; Chen, L. X.; Xu, D. S. Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6. Angew. Chem., Int. Ed. 2019, 58, 7263–7267.

[45]

Huang, H. W.; Yuan, H. F.; Zhao, J. W.; Solís-Fernández, G.; Zhou, C.; Seo, J. W.; Hendrix, J.; Debroye, E.; Steele, J. A.; Hofkens, J. et al. C(sp3)–H bond activation by perovskite solar photocatalyst cell. ACS Energy Lett. 2019, 4, 203–208.

[46]

Wang, P. F.; Mao, Y. S.; Li, L. N.; Shen, Z. R.; Luo, X.; Wu, K. F.; An, P. F.; Wang, H. T.; Su, L. N.; Li, Y. et al. Unraveling the interfacial charge migration pathway at the atomic level in a highly efficient Z-scheme photocatalyst. Angew. Chem., Int. Ed. 2019, 58, 11329–11334.

[47]

D’Hennezel, O.; Pichat, P.; Ollis, D. F. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2: By-products and mechanisms. J. Photochem. Photobiol. A Chem. 1998, 118, 197–204.

[48]

Tamai, K.; Murakami, K.; Hosokawa, S.; Asakura, H.; Teramura, K.; Tanaka, T. Visible-light selective photooxidation of aromatic hydrocarbons via ligand-to-metal charge transfer transition on Nb2O5. J. Phys. Chem. C 2017, 121, 22854–22861.

[49]

Schwitzgebel, J.; Ekerdt, J. G.; Gerischer, H.; Heller, A. Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions. J. Phys. Chem. 1995, 99, 5633–5638.

[50]

Cao, X.; Huang, A. J.; Liang, C.; Chen, H. C.; Han, T.; Lin, R.; Peng, Q.; Zhuang, Z. W.; Shen, R. A.; Chen, H. M. et al. Engineering lattice disorder on a photocatalyst: Photochromic BiOBr nanosheets enhance activation of aromatic C–H bonds via water oxidation. J. Am. Chem. Soc. 2022, 144, 3386–3397.

[51]

Deng, X. X.; Tian, S.; Chai, Z. M.; Bai, Z. J.; Tan, Y. X.; Chen, L.; Guo, J. K.; Shen, S.; Cai, M. Q.; Au, C. T. et al. Boosted activity for toluene selective photooxidation over Fe-doped Bi2WO6. Ind. Eng. Chem. Res. 2020, 59, 13528–13538.

[52]

Russell, G. A. Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons. Mechanism of the interaction of PEroxy radicals. J. Am. Chem. Soc. 1957, 79, 3871–3877.

[53]

Xiong, L. Q.; Tang, J. W. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv. Energy Mater. 2021, 11, 2003216.

Nano Research
Pages 6104-6112
Cite this article:
Bai Z-J, Mao Y, Wang B-H, et al. Tuning photocatalytic performance of Cs3Bi2Br9 perovskite by g-C3N4 for C(sp3)–H bond activation. Nano Research, 2023, 16(5): 6104-6112. https://doi.org/10.1007/s12274-022-4835-z
Topics:
Part of a topical collection:

1535

Views

43

Crossref

28

Web of Science

42

Scopus

0

CSCD

Altmetrics

Received: 31 May 2022
Revised: 26 July 2022
Accepted: 31 July 2022
Published: 12 September 2022
© Tsinghua University Press 2022
Return