AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Near-infrared-II deep tissue fluorescence microscopy and application

Pengfei Liu1,§Rong Zhao1,§Hongwei Li1Tianyu Zhu1Yuan Li2Hao Wang1( )Xiao-Dong Zhang1( )
Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China

§ Pengfei Liu and Rong Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

The near-infrared-II (NIR-II) window reduces scattering, minimizes absorption, and neglects autofluorescence, and a variety of high-quality NIR-II fluorophores have been developed. Beam shaping and NIR-II fluorophore modification further enhance imaging performance. NIR-II microscopy is widely used in oncology, clinical medicine, and neuroscience.

Abstract

Fluorescence imaging has become an essential tool in biomedical research. However, non-invasive deep-tissue three-dimensional optical in vivo imaging with the high spatiotemporal resolution is challenging due to the interaction between photons and tissues. Beam shaping has been used to tailor microscopy techniques to enhance microscope performance. The near-infrared window (NIR) between 700 and 1,700 nm, generally emphasized as the NIR-II (1,000–1,700 nm) window, has been developed into a promising bio-optical solution chosen as the lower interaction effect in this spectrum, showing potential in basic biological research and clinical application. In this review, we summarize the existing methods to increase penetration depth and extensively describe biological microscopy techniques, NIR-II spectral windows, and fluorophores. Strategies to improve bioimaging performance and NIR-II imaging applications are introduced. Based on the current research achievements, we elucidate the main challenges and provide some recommendations and prospects for deep tissue penetration fluorescence for future biomedical applications.

References

[1]

Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

[2]

Ding, F.; Feng, J.; Zhang, X. L.; Sun, J. L.; Fan, C. H.; Ge, Z. L. Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv. Drug Deliv. Rev. 2021, 173, 141–163.

[3]

Badloe, T.; Kim, I.; Kim, Y.; Kim, J.; Rho, J. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv. Sci. 2021, 8, 2102646.

[4]

Su, J.; Song, Q. Q.; Qasem, S.; O’Neill, S.; Lee, J.; Furdui, C. M.; Pasche, B.; Metheny-Barlow, L.; Masters, A. H.; Lo, H. W. et al. Multi-omics analysis of brain metastasis outcomes following craniotomy. Front. Oncol. 2021, 10, 615472.

[5]

Scheuer, J. Metasurfaces-based holography and beam shaping: Engineering the phase profile of light. Nanophotonics 2017, 6, 137–152.

[6]

Zhao, C. Z.; Cheung, K. M.; Huang, I. W.; Yang, H. Y.; Nakatsuka, N.; Liu, W. F.; Cao, Y.; Man, T. X.; Weiss, P. S.; Monbouquette, H. G. et al. Implantable aptamer-field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci. Adv. 2021, 7, eabj7422.

[7]

Tuchin, V. V.; Maksimova, I. L.; Zimnyakov, D. A.; Kon, I. L.; Mavlyutov, A. H.; Mishin, A. A. Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 1997, 2, 401–417.

[8]

Tuchin, V. V.; Genina, E. A.; Tuchina, E. S.; Svetlakova, A. V.; Svenskaya, Y. I. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv. Drug Deliv. Rev. 2022, 180, 114037.

[9]
QiY. S.YuT. T.XuJ. Y.WanP.MaY. L.ZhuJ. T.LiY. S.GongH.LuoQ. M.ZhuD. FDISCO: Advanced solvent-based clearing method for imaging whole organsSci. Adv.20195eaau835510.1126/sciadv.aau8355

Qi, Y. S.; Yu, T. T.; Xu, J. Y.; Wan, P.; Ma, Y. L.; Zhu, J. T.; Li, Y. S.; Gong, H.; Luo, Q. M.; Zhu, D. FDISCO: Advanced solvent-based clearing method for imaging whole organs. Sci. Adv. 2019, 5, eaau8355.

[10]

Matryba, P.; Kaczmarek, L.; Gołąb, J. Advances in ex situ tissue optical clearing. Laser Photonics Rev. 2019, 13, 1800292.

[11]

Zhu, D.; Larin, K. V.; Luo, Q. M.; Tuchin, V. V. Recent progress in tissue optical clearing. Laser Photonics Rev. 2013, 7, 732–757.

[12]

Weber, J.; Beard, P. C.; Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650.

[13]

Liu, S. D.; Wang, H.; Zhang, C. X.; Dong, J. N.; Liu, S. C.; Xu, R.; Tian, C. In vivo photoacoustic sentinel lymph node imaging using clinically-approved carbon nanoparticles. IEEE Trans. Biomed. Eng. 2020, 67, 2033–2042.

[14]

Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.

[15]

Yao, J. J.; Wang, L. V. Perspective on fast-evolving photoacoustic tomography. J. Biomed. Opt. 2021, 26, 060602.

[16]

Cho, S. W.; Park, S. M.; Park, B.; Kim, D. Y.; Lee, T. G.; Kim, B. M.; Kim, C.; Kim, J.; Lee, S. W.; Kim, C. S. et al. High-speed photoacoustic microscopy: A review dedicated on light sources. Photoacoustics 2021, 24, 100291.

[17]

Nguyen, V. T.; Truong, N. T. P.; Pham, V. H.; Choi, J.; Park, S.; Ly, C. D.; Cho, S. W.; Mondal, S.; Lim, H. G.; Kim, C. S. et al. Ultra-widefield photoacoustic microscopy with a dual-channel slider-crank laser-scanning apparatus for in vivo biomedical study. Photoacoustics 2021, 23, 100274.

[18]
LiZ. F.ZhangC.ZhangX.SuiJ.JinL.LinL. S.FuQ. R.LinH. X.SongJ. B. NIR-II functional materials for photoacoustic theranosticsBioconjug. Chem.202233678610.1021/acs.bioconjchem.1c00520

Li, Z. F.; Zhang, C.; Zhang, X.; Sui, J.; Jin, L.; Lin, L. S.; Fu, Q. R.; Lin, H. X.; Song, J. B. NIR-II functional materials for photoacoustic theranostics. Bioconjug. Chem. 2022, 33, 67–86.

[19]

Guo, B.; Chen, J. Q.; Chen, N. B.; Middha, E.; Xu, S. D.; Pan, Y. T.; Wu, M.; Li, K.; Liu, C. B.; Liu, B. High-resolution 3D NIR-II photoacoustic imaging of cerebral and tumor vasculatures using conjugated polymer nanoparticles as contrast agent. Adv. Mater. 2019, 31, 1808355.

[20]

Denk, W.; Strickler, J. H.; Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76.

[21]

Oheim, M.; Michael, D. J.; Geisbauer, M.; Madsen, D.; Chow, R. H. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Adv. Drug Deliv. Rev. 2006, 58, 788–808.

[22]

Ma, Y. Z.; Doughty, B. Nonlinear optical microscopy with ultralow quantum light. J. Phys. Chem. A 2021, 125, 8765–8776.

[23]

Wu, X. F.; Wang, R.; Qi, S. J.; Kwon, N.; Han, J. J.; Kim, H.; Li, H. D.; Yu, F. B.; Yoon, J. Rational design of a highly selective near-infrared two-photon fluorogenic probe for imaging orthotopic hepatocellular carcinoma chemotherapy. Angew. Chem., Int. Ed. 2021, 60, 15418–15425.

[24]

Mizuta, Y. Advances in two-photon imaging in plants. Plant Cell Physiol. 2021, 62, 1224–1230.

[25]

Zong, W. J.; Wu, R. L.; Chen, S. Y.; Wu, J. J.; Wang, H. B.; Zhao, Z.; Chen, G. Q.; Tu, R.; Wu, D. L.; Hu, Y. H. et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat. Methods 2021, 18, 46–49.

[26]

Xu, C.; Zipfel, W.; Shear, J. B.; Williams, R. M.; Webb, W. W. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA 1996, 93, 10763–10768.

[27]

Klioutchnikov, A.; Wallace, D. J.; Frosz, M. H.; Zeltner, R.; Sawinski, J.; Pawlak, V.; Voit, K. M.; Russell, P. S. J.; Kerr, J. N. D. Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats. Nat. Methods 2020, 17, 509–513.

[28]

Escobet-Montalbán, A.; Gasparoli, F. M.; Nylk, J.; Liu, P. F.; Yang, Z. Y.; Dholakia, K. Three-photon light-sheet fluorescence microscopy. Opt. Lett. 2018, 43, 5484–5487.

[29]

Zon, L. I.; Peterson, R. T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 2005, 4, 35–44.

[30]

White, R.; Rose, K.; Zon, L. Zebrafish cancer: The state of the art and the path forward. Nat. Rev. Cancer 2013, 13, 624–636.

[31]

Hotz, J. M.; Thomas, J. R.; Katz, E. N.; Robey, R. W.; Horibata, S.; Gottesman, M. M. ATP-binding cassette transporters at the zebrafish blood-brain barrier and the potential utility of the zebrafish as an in vivo model. Cancer Drug Resist. 2021, 4, 620–633.

[32]

Gamble, J. T.; Elson, D. J.; Greenwood, J. A.; Tanguay, R. L.; Kolluri, S. K. The zebrafish xenograft models for investigating cancer and cancer therapeutics. Biology 2021, 10, 252.

[33]

Chen, X. Y.; Li, Y. Y.; Yao, T. T.; Jia, R. B. Benefits of zebrafish xenograft models in cancer research. Front. Cell Dev. Biol. 2021, 9, 616551.

[34]

Zhao, S.; Huang, J.; Ye, J. A fresh look at zebrafish from the perspective of cancer research. J. Exp. Clin. Cancer Res. 2015, 34, 80.

[35]

Pensado-López, A.; Fernández-Rey, J.; Reimunde, P.; Crecente-Campo, J.; Sánchez, L.; Torres Andón, F. Zebrafish models for the safety and therapeutic testing of nanoparticles with a focus on macrophages. Nanomaterials 2021, 11, 1784.

[36]

Liu, P. F.; Mu, X. Y.; Zhang, X. D.; Ming, D. The near-infrared-II fluorophores and advanced microscopy technologies development and application in bioimaging. Bioconjug. Chem. 2020, 31, 260–275.

[37]

Zhu, X. F.; Liu, C. C.; Hu, Z. B.; Liu, H. L.; Wang, J.; Wang, Y.; Wang, X. Y.; Ma, R.; Zhang, X. D.; Sun, H. T. et al. High brightness NIR-II nanofluorophores based on fused-ring acceptor molecules. Nano Res. 2020, 13, 2570–2575.

[38]

Wan, H.; Du, H. T.; Wang, F. F.; Dai, H. J. Molecular Imaging in the second near-infrared window. Adv. Funct. Mater. 2019, 29, 1900566.

[39]

Tao, W.; Farokhzad, O. C. Theranostic nanomedicine in the NIR-II window: Classification, fabrication, and biomedical applications. Chem. Rev. 2022, 122, 5405–5407.

[40]

Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

[41]

Qi, J.; Alifu, N.; Zebibula, A.; Wei, P. F.; Lam, J. W. Y.; Peng, H. Q.; Kwok, R. T. K.; Qian, J.; Tang, B. Z. Highly stable and bright AIE dots for NIR-II deciphering of living rats. Nano Today 2020, 34, 100893.

[42]

Suo, Y. K.; Wu, F. X.; Xu, P. F.; Shi, H.; Wang, T. Z.; Liu, H. G.; Cheng, Z. NIR-II fluorescence endoscopy for targeted imaging of colorectal cancer. Adv. Healthc. Mater. 2018, 8, 1900974.

[43]

Hu, F.; Xu, S. D.; Liu, B. Photosensitizers with aggregation-induced emission: Materials and biomedical applications. Adv. Mater. 2018, 30, 1801350.

[44]

Song, X. R.; Zhu, W.; Ge, X. G.; Li, R. F.; Li, S. H.; Chen, X.; Song, J. B.; Xie, J. P.; Chen, X. Y.; Yang, H. H. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem., Int. Ed. 2021, 60, 1306–1312.

[45]

Chen, J.; Feng, S. J.; Chen, M.; Li, P.; Yang, Y. M.; Zhang, J.; Xu, X. G.; Li, Y. X.; Chen, S. Y. In vivo dynamic monitoring of bacterial infection by NIR-II fluorescence imaging. Small 2020, 16, 2002054.

[46]

Li, J. C.; Yu, X. R.; Jiang, Y. Y.; He, S. S.; Zhang, Y.; Luo, Y.; Pu, K. Y. Second near-infrared photothermal semiconducting polymer nanoadjuvant for enhanced cancer immunotherapy. Adv. Mater. 2021, 33, 2003458.

[47]

Li, S. L.; Chen, H. T.; Liu, H. L.; Liu, L.; Yuan, Y.; Mao, C.; Zhang, W.; Zhang, X. D.; Guo, W. S.; Lee, C. S. et al. In vivo real-time pharmaceutical evaluations of near-infrared II fluorescent nanomedicine bound polyethylene glycol ligands for tumor photothermal ablation. ACS Nano 2020, 14, 13681–13690.

[48]

Wang, H. B.; Cheng, X. D.; Tian, J. B.; Xiao, Y. L.; Tian, T.; Xu, F. C.; Hong, X. C.; Zhu, M. X. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol. Ther. 2020, 209, 107497.

[49]

Elliott, A. D. Confocal microscopy: Principles and modern practices. Curr. Protoc. Cytom. 2020, 92, e68.

[50]

Stelzer, E. H. K.; Strobl, F.; Chang, B. J.; Preusser, F.; Preibisch, S.; McDole, K.; Fiolka, R. Light sheet fluorescence microscopy. Nat. Rev. Methods Primers 2021, 1, 73.

[51]

Hillman, E. M. C.; Voleti, V.; Li, W. Z.; Yu, H. Light-sheet microscopy in neuroscience. Annu. Rev. Neurosci. 2019, 42, 295–313.

[52]

Yasui, M.; Watanabe, Y.; Ishikawa, M. Wide viewing angle with a downsized system in projection-type integral photography by using curved mirrors. Opt. Express 2021, 29, 12066–12080.

[53]

Levoy, M.; Ng, R.; Adams, A.; Footer, M.; Horowitz, M. Light field microscopy. ACM Trans. Graphics 2006, 25, 924–934.

[54]

Wang, Z. Q.; Zhu, L. X.; Zhang, H.; Li, G.; Yi, C. Q.; Li, Y.; Yang, Y. C.; Ding, Y. C.; Zhen, M.; Gao, S. B. et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat. Methods 2021, 18, 551–556.

[55]

Wang, D. P.; Zhu, Z. J.; Xu, Z. Y.; Zhang, D. M. Neuroimaging with light field microscopy: A mini review of imaging systems. Eur. Phys. J. Spec. Top. 2022, 231, 749–761.

[56]

Cóndor, M.; García-Aznar, J. M. An iterative finite element-based method for solving inverse problems in traction force microscopy. Comput. Methods Programs Biomed. 2019, 182, 105056.

[57]

Buccino, F.; Colombo, C.; Vergani, L. M. A review on multiscale bone damage: From the clinical to the research perspective. Materials 2021, 14, 1240.

[58]

Nehme, E.; Freedman, D.; Gordon, R.; Ferdman, B.; Weiss, L. E.; Alalouf, O.; Naor, T.; Orange, R.; Michaeli, T.; Shechtman, Y. DeepSTORM3D: Dense 3D localization microscopy and PSF design by deep learning. Nat. Methods 2020, 17, 734–740.

[59]

Mlodzianoski, M. J.; Cheng-Hathaway, P. J.; Bemiller, S. M.; McCray, T. J.; Liu, S.; Miller, D. A.; Lamb, B. T.; Landreth, G. E.; Huang, F. Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections. Nat. Methods 2018, 15, 583–586.

[60]

Ximendes, E.; Benayas, A.; Jaque, D.; Marin, R. Quo vadis, nanoparticle-enabled in vivo fluorescence imaging? ACS Nano 2021, 15, 1917–1941.

[61]

Yang, J.; Hong, X. C. New glowing dyes in vivo imaging with wavelengths beyond 1500 nm. Sci. China Chem. 2019, 62, 7–8.

[62]

Kenry; Duan, Y. K.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1802394.

[63]

Jiang, Y. Y.; Pu, K. Y. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 2021, 121, 13086–13131.

[64]

Wang, Z. J.; Huang, J. G.; Huang, J. S.; Yu, B. R.; Pu, K. Y.; Xu, F. J. Chemiluminescence: From mechanism to applications in biological imaging and therapy. Aggregate 2021, 2, e140.

[65]

Zhou, H.; Li, S. S.; Zeng, X. D.; Zhang, M. X.; Tang, L.; Li, Q. Q.; Chen, D. L.; Meng, X. L.; Hong, X. C. Tumor-homing peptide-based NIR-II probes for targeted spontaneous breast tumor imaging. Chin. Chem. Lett. 2020, 31, 1382–1386.

[66]

Yang, R. Q.; Lou, K. L.; Wang, P. Y.; Gao, Y. Y.; Zhang, Y. Q.; Chen, M.; Huang, W. H.; Zhang, G. J. Surgical navigation for malignancies guided by near-infrared-II fluorescence imaging. Small Methods 2021, 5, 2001066.

[67]

Diao, S.; Hong, G. S.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H, J. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 2015, 8, 3027–3034.

[68]

Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723–730.

[69]

Grimm, J. B.; Lavis, L. D. Caveat fluorophore: An insiders’ guide to small-molecule fluorescent labels. Nat. Methods 2022, 19, 149–158.

[70]

Hontani, Y.; Xia, F.; Xu, C. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Sci. Adv. 2021, 7, eabf3531.

[71]
XuW. H.WangD.TangB. Z. NIR-II AIEgens: A win-win integration towards bioapplicationsAngew. Chem.20211337552756310.1002/anie.202005899

Xu, W. H.; Wang, D.; Tang, B. Z. NIR-II AIEgens: A win-win integration towards bioapplications. Angew. Chem. 2021, 133, 7552–7563.

[72]

Dou, K.; Feng, W. Q.; Fan, C.; Cao, Y.; Xiang, Y. H.; Liu, Z. H. Flexible designing strategy to construct activatable NIR-II fluorescent probes with emission maxima beyond 1200 nm. Anal. Chem. 2021, 93, 4006–4014.

[73]

Yang, Y. Y.; Yu, Y. J.; Chen, H.; Meng, X. X.; Ma, W.; Yu, M.; Li, Z. Y.; Li, C. H.; Liu, H. L.; Zhang, X. D. et al. Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging. ACS Nano 2020, 14, 13536–13547.

[74]

Ma, H. Z.; Wang, J. Y.; Zhang, X. D. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord. Chem. Rev. 2021, 448, 214184.

[75]

Zhong, Y. T.; Dai, H. J. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 2020, 13, 1281–1294.

[76]

Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.

[77]

Chen, M.; Feng, S. J.; Yang, Y. M.; Li, Y. X.; Zhang, J.; Chen, S. Y.; Chen, J. Tracking the in vivo spatio-temporal patterns of neovascularization via NIR-II fluorescence imaging. Nano Res. 2020, 13, 3123–3129.

[78]

Fang, Y.; Shang, J. Z.; Liu, D. K.; Shi, W.; Li, X. H.; Ma, H. M. Design, synthesis, and application of a small molecular NIR-II fluorophore with maximal emission beyond 1200 nm. J. Am. Chem. Soc. 2020, 142, 15271–15275.

[79]

Ye, F. Y.; Huang, W. J.; Li, C. L.; Li, G. J.; Yang, W. C.; Liu, S. H.; Yin, J.; Sun, Y.; Yang, G. F. Near-infrared fluorescence/photoacoustic agent with an intensifying optical performance for imaging-guided effective photothermal therapy. Adv. Therap. 2020, 3, 2000170.

[80]

Yang, Q. L.; Ma, H. L.; Liang, Y. Y.; Dai, H. J. Rational design of high brightness NIR-II organic dyes with S-D-A-D-S structure. Acc. Mater. Res. 2021, 2, 170–183.

[81]

Liu, S. J.; Ou, H. L.; Li, Y. Y.; Zhang, H. K.; Liu, J. K.; Lu, X. F.; Kwok, R. T. K.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. Planar and twisted molecular structure leads to the high brightness of semiconducting polymer nanoparticles for NIR-IIa fluorescence imaging. J. Am. Chem. Soc. 2020, 142, 15146–15156.

[82]

Antaris, A. L.; Chen, H.; Diao, S.; Ma, Z. R.; Zhang, Z.; Zhu, S. J.; Wang, J.; Lozano, A. X.; Fan, Q. L.; Chew, L. et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 2017, 8, 15269.

[83]

Sun, Y.; Qu, C. R.; Chen, H.; He, M. M.; Tang, C.; Shou, K. Q.; Hong, S.; Yang, M.; Hong, X. C.; Cheng, Z. et al. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem. Sci. 2016, 7, 6203–6207.

[84]

Zhu, S. J.; Hu, Z. B.; Tian, R.; Yung, B. C.; Yang, Q. L.; Zhao, S.; Kiesewetter, D. O.; Niu, G.; Sun, H. T.; Antaris, A. L. et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging. Adv. Mater. 2018, 30, 1802546.

[85]

Ding, F.; Fan, Y.; Sun, Y.; Zhang, F. Beyond 1000 nm emission wavelength: Recent advances in organic and inorganic emitters for deep-tissue molecular imaging. Adv. Healthc. Mater. 2019, 8, 1900260.

[86]

Tian, R.; Zeng, Q.; Zhu, S. J.; Lau, J.; Chandra, S.; Ertsey, R.; Hettie, K. S.; Teraphongphom, T.; Hu, Z. B.; Niu, G. et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci. Adv. 2019, 5, eaaw0672.

[87]

Starosolski, Z.; Bhavane, R.; Ghaghada, K. B.; Vasudevan, S. A.; Kaay, A.; Annapragada, A. Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS One 2017, 12, e0187563.

[88]

Godard, A.; Kalot, G.; Pliquett, J.; Busser, B.; Le Guével, X.; Wegner, K. D.; Resch-Genger, U.; Rousselin, Y.; Coll, J. L.; Denat, F. et al. Water-soluble aza-BODIPYs: Biocompatible organic dyes for high contrast in vivo NIR-II imaging. Bioconjugate. Chem. 2020, 31, 1088–1092.

[89]

Bai, L.; Sun, P. F.; Liu, Y.; Zhang, H.; Hu, W. B.; Zhang, W. S.; Liu, Z. P.; Fan, Q. L.; Li, L.; Huang, W. Novel aza-BODIPY based small molecular NIR-II fluorophores for in vivo imaging. ChemComm 2019, 55, 10920–10923.

[90]

Ni, Y.; Lee, S. S.; Son, M.; Aratani, N.; Ishida, M.; Samanta, A.; Yamada, H.; Chang, Y. T.; Furuta, H.; Kim, D. et al. A diradical approach towards BODIPY-based dyes with intense near-infrared absorption around λ = 1100 nm. Angew. Chem., Int. Ed. 2016, 55, 2815–2819.

[91]

Chen, Y.; Yu, H. L.; Wang, Y. S.; Sun, P. F.; Fan, Q. L.; Ji, M. Thiadiazoloquinoxaline derivative-based NIR-II organic molecules for NIR-II fluorescence imaging and photothermal therapy. Biomater. Sci. 2022, 10, 2772–2788.

[92]

Yin, C.; Lu, X. M.; Fan, Q. L.; Huang, W. Organic semiconducting nanomaterials-assisted phototheranostics in near-infrared-II biological window. View 2021, 2, 20200070.

[93]

Freidus, L. G.; Pradeep, P.; Kumar, P.; Choonara, Y. E.; Pillay, V. Alternative fluorophores designed for advanced molecular imaging. Drug Discov. Today 2018, 23, 115–133.

[94]

Yan, J.; Li, B.; Yang, P. P.; Lin, J.; Dai, Y. L. Progress in light-responsive lanthanide nanoparticles toward deep tumor theranostics. Adv. Funct. Mater. 2021, 31, 2104325.

[95]

Kamimura, M.; Kanayama, N.; Tokuzen, K.; Soga, K.; Nagasaki, Y. Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate). Nanoscale 2011, 3, 3705–3713.

[96]

Zevon, M.; Ganapathy, V.; Kantamneni, H.; Mingozzi, M.; Kim, P.; Adler, D.; Sheng, Y.; Tan, M. C.; Pierce, M.; Riman, R. E. et al. CXCR-4 targeted, short wave infrared (SWIR) emitting nanoprobes for enhanced deep tissue imaging and micrometastatic cancer lesion detection. Small 2015, 11, 6347–6357.

[97]

Zhang, M. X.; Yue, J. Y.; Cui, R.; Ma, Z. R.; Wan, H.; Wang, F. F.; Zhu, S. J.; Zhou, Y.; Kuang, Y.; Zhong, Y. T. et al. Bright quantum dots emitting at ~ 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl. Acad. Sci. USA 2018, 115, 6590–6595.

[98]

Tang, L.; Li, J.; Pan, T.; Yin, Y.; Mei, Y. J.; Xiao, Q. Q.; Wang, R. T.; Yan, Z. W.; Wang, W. Versatile carbon nanoplatforms for cancer treatment and diagnosis: Strategies, applications and future perspectives. Theranostics 2022, 12, 2290–2321.

[99]

Cao, C.; Wu, N.; Yuan, W.; Gu, Y. Y.; Ke, J. M.; Feng, W.; Li, F. Y. Ln3+-doped nanoparticles with enhanced NIR-II luminescence for lighting up blood vessels in mice. Nanoscale 2020, 12, 8248–8254.

[100]

Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem., Int. Ed. 2012, 51, 9818–9821.

[101]

Li, C. Y.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G. C.; Li, L.; Wu, D. M.; Wang, Q. B. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014, 35, 393–400.

[102]

Tang, R.; Xue, J. P.; Xu, B. G.; Shen, D. W.; Sudlow, G. P.; Achilefu, S. Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging. ACS Nano 2015, 9, 220–230.

[103]

Liu, H. J.; Li, C. W.; Qian, Y.; Hu, L.; Fang, J.; Tong, W.; Nie, R. R.; Chen, Q. W.; Wang, H. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials 2020, 232, 119700.

[104]

Liu, H. L.; Hong, G. S.; Luo, Z. T.; Chen, J. C.; Chang, J. L.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L. L. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 2019, 31, 1901015.

[105]

Cao, Y. T.; Chen, T. K.; Yao, Q. F.; Xie, J. P. Diversification of metallic molecules through derivatization chemistry of Au25 nanoclusters. Acc. Chem. Res. 2021, 54, 4142–4153.

[106]

Su, Z. W.; Dong, S. W.; Zhao, S. C.; Liu, K. S.; Tan, Y.; Jiang, X. Y.; Assaraf, Y. G.; Qin, B.; Chen, Z. S.; Zou, C. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist. Updates 2021, 58, 100777.

[107]

Yomogida, Y.; Tanaka, T.; Zhang, M. F.; Yudasaka, M.; Wei, X. J.; Kataura, H. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat. Commun. 2016, 7, 12056.

[108]

Robinson, J. T.; Hong, G. S.; Liang, Y. Y.; Zhang, B.; Yaghi, O. K.; Dai, H. J. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 2012, 134, 10664–10669.

[109]

Diao, S.; Blackburn, J. L.; Hong, G. S.; Antaris, A. L.; Chang, J. L.; Wu, J. Z.; Zhang, B.; Cheng, K.; Kuo, C. J.; Dai, H. J. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. 2015, 127, 14971–14975.

[110]

Welsher, K.; Sherlock, S. P.; Dai, H. J. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948.

[111]

Zhu, S. J.; Herraiz, S.; Yue, J. Y.; Zhang, M. X.; Wan, H.; Yang, Q. L.; Ma, Z. R.; Wang, Y.; He, J. H.; Antaris A. L. et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv. Mater. 2018, 30, 1705799.

[112]
Du, H. T.; Wan, H.; Dai, H. J. Recent advances in development of NIR-II fluorescent agents. In Near Infrared-Emitting Nanoparticles for Biomedical Applications. Benayas, A.; Hemmer, E.; Hong, G. S.; Jaque, D., Eds.; Springer: Cham, 2020; pp 83–101.
[113]

Liu, S.; Hoess, P.; Ries, J. Super-resolution microscopy for structural cell biology. Annu. Rev. Biophys. 2022, 51, 301–326.

[114]

Zhu, R.; Su, L. C.; Dai, J. Y.; Li, Z. W.; Bai, S. M.; Li, Q. Q.; Chen, X. Y.; Song, J. B.; Yang, H. H. Biologically responsive plasmonic assemblies for second near-infrared window photoacoustic imaging-guided concurrent chemo-immunotherapy. ACS Nano 2020, 14, 3991–4006.

[115]
WangS. W.LiuJ.GohC. C.NgL. G.LiuB. NIR-II-excited intravital two-photon microscopy distinguishes deep cerebral and tumor vasculatures with an ultrabright NIR-I AIE luminogen Adv. Mater.201931190444710.1002/adma.201904447

Wang, S. W.; Liu, J.; Goh, C. C.; Ng, L. G.; Liu, B. NIR-II-excited intravital two-photon microscopy distinguishes deep cerebral and tumor vasculatures with an ultrabright NIR-I AIE luminogen. Adv. Mater. 2019, 31, 1904447.

[116]

Zhang, Y.; Jiang, H.; Ye, T. Y.; Juhas, M. Deep learning for imaging and detection of microorganisms. Trends Microbiol. 2021, 29, 569–572.

[117]

Sheppard, C. J. R. The development of microscopy for super-resolution: Confocal microscopy, and image scanning microscopy. Appl. Sci. 2021, 11, 8981.

[118]

Hamed, A. M. A hyper-resolving polynomial aperture and its application in microscopy. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 25.

[119]

Korobchevskaya, K.; Colin-York, H.; Barbieri, L.; Fritzsche, M. Extended mechanical force measurements using structured illumination microscopy. Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20200151.

[120]

Hell, S. W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782.

[121]

Gugel, H.; Bewersdorf, J.; Jakobs, S.; Engelhardt, J.; Storz, R.; Hell, S. W. Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy. Biophys. J. 2004, 87, 4146–4152.

[122]

Ivanchenko, S.; Glaschick, S.; Röcker, C.; Oswald, F.; Wiedenmann, J.; Nienhaus, G. U. Two-photon excitation and photoconversion of EosFP in dual-color 4Pi confocal microscopy. Biophys. J. 2007, 92, 4451–4457.

[123]

Osseforth, C.; Moffitt, J. R.; Schermelleh, L.; Michaelis, J. Simultaneous dual-color 3D STED microscopy. Opt. Express 2014, 22, 7028–7039.

[124]

Li, D. Y.; Qin, W.; Xu, B.; Qian, J.; Tang, B. Z. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Adv. Mater. 2017, 29, 1703643.

[125]

Codron, P.; Letournel, F.; Marty, S.; Renaud, L.; Bodin, A.; Duchesne, M.; Verny, C.; Lenaers, G.; Duyckaerts, C.; Julien, J. P. et al. Stochastic optical reconstruction microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain. Neuropathol. Appl. Neurobiol. 2021, 47, 127–142.

[126]

Rust, M. J.; Bates, M.; Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796.

[127]

Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc 2000, 198, 82–87.

[128]

Prakash, K.; Diederich, B.; Reichelt, S.; Heintzmann, R.; Schermelleh, L. Super-resolution structured illumination microscopy: Past, present and future. Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20200143.

[129]

Heintzmann, R.; Huser, T. Super-resolution structured illumination microscopy. Chem. Rev. 2017, 117, 13890–13908.

[130]

Ma, Y.; Wen, K.; Liu, M.; Zheng, J. J.; Chu, K. Q.; Smith, Z. J.; Liu, L. X.; Gao, P. Recent advances in structured illumination microscopy. J. Phys. Photonics 2021, 3, 024009.

[131]

Boland, M. A.; Cohen, E. A. K.; Flaxman, S. R.; Neil, M. A. A. Improving axial resolution in structured illumination microscopy using deep learning. Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20200298.

[132]

Wang, F. F.; Ma, Z. R.; Zhong, Y. T.; Salazar, F.; Xu, C.; Ren, F. Q.; Qu, L. Q.; Wu, A. M.; Dai, H. J. In vivo NIR-II structured-illumination light-sheet microscopy. Proc. Natl. Acad. Sci. USA 2021, 118, e2023888118.

[133]

Ma, Z. R.; Wang, F. F.; Wang, W. Z.; Zhong, Y. T.; Dai, H. J. Deep learning for in vivo near-infrared imaging. Proc. Natl. Acad. Sci. USA 2021, 118, e2021446118.

[134]

Nylk, J.; McCluskey, K.; Preciado, M. A.; Mazilu, M.; Yang, Z. Y.; Gunn-Moore, F. J.; Aggarwal, S.; Tello, J. A.; Ferrier, D. E. K.; Dholakia, K. Light-sheet microscopy with attenuation-compensated propagation-invariant beams. Sci. Adv. 2018, 4, eaar4817.

[135]

Yang, Q. L.; Ma, Z. R.; Wang, H. S.; Zhou, B.; Zhu, S. J.; Zhong, Y. T.; Wang, J. Y.; Wan, H.; Antaris, A.; Ma, R. et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv. Mater. 2017, 29, 1605497.

[136]

Mayder, D. M.; Tonge, C. M.; Nguyen, G. D.; Tran, M. V.; Tom, G.; Darwish, G. H.; Gupta, R.; Lix, K.; Kamal, S.; Algar, W. R. et al. Polymer dots with enhanced photostability, quantum yield, and two-photon cross-section using structurally constrained deep-blue fluorophores. J. Am. Chem. Soc. 2021, 143, 16976–16992.

[137]

Dai, H. M.; Shen, Q.; Shao, J. J.; Wang, W. J.; Gao, F.; Dong, X. C. Small molecular NIR-II fluorophores for cancer phototheranostics. Innovation 2021, 2, 100082.

[138]

Si, P.; Razmi, N.; Nur, O.; Solanki, S.; Pandey, C. M.; Gupta, R. K.; Malhotra, B. D.; Willander, M.; de la Zerda, A. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. 2021, 3, 2679–2698.

[139]

Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.

[140]

Banerjee, M.; Bhosle, A. A.; Chatterjee, A.; Saha, S. Mechanochemical synthesis of organic dyes and fluorophores. J. Org. Chem. 2021, 86, 13911–13923.

[141]

Liu, Y. S.; Li, Y.; Koo, S.; Sun, Y.; Liu, Y. X.; Liu, X.; Pan, Y. N.; Zhang, Z. Y.; Du, M. X.; Lu, S. Y. et al. Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: From strategic design toward molecular imaging and theranostics. Chem. Rev. 2022, 122, 209–268.

[142]

Liu, C. C.; Ma, H. L.; Hu, Z. B.; Tian, R.; Ma, R.; Xu, Y. F.; Wang, X. Y.; Zhu, X. F.; Yu, P. P.; Zhu, S. J. et al. Shielding unit engineering of NIR-II molecular fluorophores for improved fluorescence performance and renal excretion ability. Front. Chem. 2021, 9, 739802.

[143]

Gong, L.; Shan, X. Z.; Zhao, X. H.; Tang, L.; Zhang, X. B. Activatable NIR-II fluorescent probes applied in biomedicine: Progress and perspectives. ChemMedChem 2021, 16, 2426–2440.

[144]

Zhang, Y.; Zhang, Y. J.; Hong, G. S.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G. C.; Liu, Z.; Dai, H. J. et al. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639–3646.

[145]

Su, Y. B.; Yu, B.; Wang, S.; Cong, H. L.; Shen, Y. Q. NIR-II bioimaging of small organic molecule. Biomaterials 2021, 271, 120717.

[146]

Zhang, X. D.; Chen, J.; Min, Y.; Park, G. B.; Shen, X.; Song, S. S.; Sun, Y. M.; Wang, H.; Long, W.; Xie, J. P. et al. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv. Funct. Mater. 2014, 24, 1718–1729.

[147]

Yao, C.; Wang, P. Y.; Li, X. M.; Hu, X. Y.; Hou, J. L.; Wang, L. Y.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 2016, 28, 9341–9348.

[148]

Ghosh, D.; Bagley, A. F.; Na, Y. J.; Birrer, M. J.; Bhatia, S. N.; Belcher, A. M. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 2014, 111, 13948–13953.

[149]

Iverson, N. M.; Barone, P. W.; Shandell, M.; Trudel, L. J.; Sen, S.; Sen, F.; Ivanov, V.; Atolia, E.; Farias, E.; McNicholas, T. P. et al. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 2013, 8, 873–880.

[150]

He, S. Q.; Chen, S.; Li, D. F.; Wu, Y. F.; Zhang, X.; Liu, J. F.; Song, J.; Liu, L. W.; Qu, J. L.; Cheng, Z. High affinity to skeleton rare earth doped nanoparticles for near-infrared II imaging. Nano Lett. 2019, 19, 2985–2992.

[151]

He, S. Q.; Song, J.; Liu, J. F.; Liu, L. W.; Qu, J. L.; Cheng, Z. Enhancing photoacoustic intensity of upconversion nanoparticles by photoswitchable azobenzene-containing polymers for dual NIR-II and photoacoustic imaging in vivo. Adv. Opt. Mater. 2019, 7, 1900045.

[152]

Qi, J.; Sun, C. W.; Li, D. Y.; Zhang, H. Q.; Yu, W. B.; Zebibula, A.; Lam, J. W. Y.; Xi, W.; Zhu, L.; Cai, F. H. et al. Aggregation-induced emission luminogen with near-infrared-II excitation and near-infrared-I emission for ultradeep intravital two-photon microscopy. ACS Nano 2018, 12, 7936–7945.

[153]

Zhao, Z.; Zhang, H. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: New vistas at the aggregate level. Angew. Chem., Int. Ed. 2020, 59, 9888–9907.

[154]

Lin, J. C.; Zeng, X. D.; Xiao, Y. L.; Tang, L.; Nong, J. X.; Liu, Y. F.; Zhou, H.; Ding, B. B.; Xu, F. C.; Tong, H. X. et al. Novel near-infrared II aggregation-induced emission dots for in vivo bioimaging. Chem. Sci. 2019, 10, 1219–1226.

[155]

Samanta, S.; Huang, M. N.; Li, S. Q.; Yang, Z. G.; He, Y.; Gu, Z. Y.; Zhang, J. G.; Zhang, D.; Liu, L. W.; Qu, J. L. AIE-active two-photon fluorescent nanoprobe with NIR-II light excitability for highly efficient deep brain vasculature imaging. Theranostics 2021, 11, 2137–2148.

[156]

Liu, Y. F.; Gou, H. L.; Huang, X.; Zhang, G. Y.; Xi, K.; Jia, X. D. Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. Nanoscale 2020, 12, 1589–1601.

[157]

Liu, N.; Chen, X.; Kimm, M. A.; Stechele, M.; Chen, X. L.; Zhang, Z. M.; Wildgruber, M.; Ma, X. P. In vivo optical molecular imaging of inflammation and immunity. J. Mol. Med. 2021, 99, 1385–1398.

[158]

Bodea, S. V.; Westmeyer, G. G. Photoacoustic neuroimaging-perspectives on a maturing imaging technique and its applications in neuroscience. Front. Neurosci. 2021, 15, 655247.

[159]

Yang, Y. J.; Zhang, Y.; Xie, S.; Tang, Y. H.; Zeng, Z. B.; Tang, B. Z. Hydrogel-derived luminescent scaffolds for biomedical applications. Mater. Chem. Front. 2021, 5, 3524–3548.

[160]

Hicks, R. J.; Roselt, P. J.; Kallur, K. G.; Tothill, R. W.; Mileshkin, L. FAPI PET/CT: Will it end the hegemony of 18F-FDG in oncology? J. Nucl. Med. 2021, 62, 296–302.

[161]

Eekers, D. B. P.; Di Perri, D.; Roelofs, E.; Postma, A.; Dijkstra, J.; Ajithkumar, T.; Alapetite, C.; Blomstrand, M.; Burnet, N. G.; Calugaru, V. et al. Update of the EPTN atlas for CT-and MR-based contouring in Neuro-Oncology. Radiother Oncol. 2021, 160, 259–265.

[162]

Otazo, R.; Lambin, P.; Pignol, J. P.; Ladd, M. E.; Schlemmer, H. P.; Baumann, M.; Hricak, H. MRI-guided radiation therapy: An emerging paradigm in adaptive radiation oncology. Radiology 2021, 298, 248–260.

[163]

Wang, H.; Mu, X. Y.; Yang, J.; Liang, Y. Y.; Zhang, X. D.; Ming, D. Brain imaging with near-infrared fluorophores. Coord. Chem. Rev. 2019, 380, 550–571.

[164]

Yang, S.; Chen, C.; Qiu, Y.; Xu, C.; Yao, J. Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials 2021, 268, 120562.

[165]

Fan, X. X.; Li, Y. R.; Feng, Z.; Chen, G. Q.; Zhou, J.; He, M. B.; Wu, L.; Li, S. L.; Qian, J.; Lin, H. Nanoprobes-assisted multichannel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes. Adv. Sci. 2021, 8, 2003972.

[166]

Zhang, X. D.; Luo, Z. T.; Chen, J.; Shen, X.; Song, S. S.; Sun, Y. M.; Fan, S. J.; Fan, F. Y.; Leong, D. T.; Xie, J. P. Ultrasmall Au10–12(SG)10–12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014, 26, 4565–4568.

[167]

Wang, F. F.; Wan, H.; Ma, Z. R.; Zhong, Y. T.; Sun, Q. C.; Tian, Y.; Qu, L. Q.; Du, H. T.; Zhang, M. X.; Li, L. L. et al. Light-sheet microscopy in the near-infrared II window. Nat. Methods 2019, 16, 545–552.

[168]

Zhang, X. D.; Wang, H. S.; Antaris, A. L.; Li, L. L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G. S.; Ma, Z. R.; Wang, J. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 2016, 28, 6872–6879.

[169]

Wang, F. F.; Qu, L. Q.; Ren, F. Q.; Baghdasaryan, A.; Jiang, Y. Y.; Hsu, R.; Liang, P.; Li, J. C.; Zhu, G. Z.; Ma, Z. R. et al. High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging. Proc. Natl. Acad. Sci. USA 2022, 119, e2123111119.

[170]

Ma, S. Y.; Chen, G.; Xu, J.; Liu, Y. X.; Li, G. L.; Chen, T.; Li, Y. L.; James, T. D. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coord. Chem. Rev. 2021, 427, 213553.

[171]

Li, Z.; Wang, C. X.; Zhang, M.; Li, S. J.; Mao, Z. Q.; Liu, Z. H. Activatable luminescent probes for imaging brain diseases. Nano Today 2021, 39, 101239.

[172]

Zhao, W.; Yu, X. R.; Peng, S. J.; Luo, Y.; Li, J. C.; Lu, L. G. Construction of nanomaterials as contrast agents or probes for glioma imaging. J. Nanobiotechnol. 2021, 19, 125.

[173]

Li, Y.; Gao, J. F.; Wang, S. P.; Li, S. J.; Hou, X. W.; Pan, Y. N.; Gao, J. L.; Qiao, X.; Tian, Z. Q.; Chen, D. L. et al. Organic NIR-II dyes with ultralong circulation persistence for image-guided delivery and therapy. J. Control. Release 2022, 342, 157–169.

[174]

Li, C.; Chen, L. L.; Wang, Y. Y.; Wang, T. T.; Di, D.; Zhang, H.; Zhao, H. H.; Shen, X.; Guo, J. Protein nanoparticle-related osmotic pressure modifies nonselective permeability of the blood-brain barrier by increasing membrane fluidity. Int. J. Nanomedicine 2021, 16, 1663–1680.

[175]

Ding, C. P.; Huang, Y. J.; Shen, Z. Y.; Chen, X. Y. Synthesis and bioapplications of Ag2S quantum dots with near-infrared fluorescence. Adv. Mater. 2021, 33, 2007768.

[176]

Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

[177]

Wu, P.; Zhu, Y.; Chen, L. L.; Tian, Y.; Xiong, H. A fast-responsive OFF-ON near-infrared-II fluorescent probe for in vivo detection of hypochlorous acid in rheumatoid arthritis. Anal. Chem. 2021, 93, 13014–13021.

[178]

Yan, L.; Gu, Q. S.; Jiang, W. L.; Tan, M.; Tan, Z. K.; Mao, G. J.; Xu, F.; Li, C. Y. Near-infrared fluorescent probe with large stokes shift for imaging of hydrogen sulfide in tumor-bearing mice. Anal. Chem. 2022, 94, 5514–5520.

[179]

Kim, S. H.; Kwon, J. S.; Cho, J. G.; Park, K. G.; Lim, T. H.; Kim, M. S.; Choi, H. S.; Park, C. H.; Lee, S. J. Non-invasive in vivo monitoring of transplanted stem cells in 3D-bioprinted constructs using near-infrared fluorescent imaging. Bioeng. Transl. Med. 2021, 6, e10216.

[180]

Yu, X. M.; Ying, Y. Y.; Feng, Z.; Qi, J.; Zheng, J. Y.; Zhang, Y. H.; Liu. J.; Qian, J.; Tang, B. Z.; Zhang, D. Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window. Nano Today 2021, 39, 101235.

[181]

Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.

[182]
WangR.ZhouL.WangW. X.LiX. M.ZhangF. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriersNat. Commun.201781470210.1038/ncomms14702

Wang, R.; Zhou, L.; Wang, W. X.; Li, X. M.; Zhang, F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat. Commun. 2017, 8, 14702.

[183]

Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.

[184]

Li, Z. S.; Li, T. T.; Zhang, C.; Ni, J. S.; Ji, Y. Y.; Sun, A. H.; Peng, D. L.; Wu, W. J.; Xi, L.; Li, K. A multispectral photoacoustic tracking strategy for wide-field and real-time monitoring of macrophages in inflammation. Anal. Chem. 2021, 93, 8467–8475.

[185]

Chen, J. J.; Chen, L. Q.; Wu, Y. L.; Fang, Y. C.; Zeng, F.; Wu, S. Z.; Zhao, Y. L. A H2O2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-II fluorescent imaging. Nat. Commun. 2021, 12, 6870.

[186]

Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed. 2014, 53, 12086–12090.

[187]

Huang, D. H.; Lin, S. Y.; Wang, Q. W.; Zhang, Y. J.; Li, C. Y.; Ji, R.; Wang, M.; Chen, G. C.; Wang, Q. B. An NIR-II fluorescence/dual bioluminescence multiplexed imaging for in vivo visualizing the location, survival, and differentiation of transplanted stem cells. Adv. Funct. Mater. 2019, 29, 1806546.

[188]

Li, Z. K.; Wang, C. Y.; Chen, J. R.; Lian, X.; Xiong, C. X.; Tian, R.; Hu, L. F.; Xiong, X. X.; Tian, J. uPAR targeted phototheranostic metal-organic framework nanoprobes for MR/NIR-II imaging-guided therapy and surgical resection of glioblastoma. Mater. Des. 2021, 198, 109386.

[189]

Wan, H.; Yue, J. Y.; Zhu, S. J.; Uno, T.; Zhang, X. D.; Yang, Q. L.; Yu, K.; Hong, G. S.; Wang, J. Y.; Li, L. L. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 2018, 9, 1171.

[190]

Feng, X. Y.; Cao, Y.; Zhuang, P. R.; Cheng, R.; Zhang, X. J.; Liu, H.; Wang, G. H.; Sun, S. K. Rational synthesis of IR820-albumin complex for NIR-II fluorescence imaging-guided surgical treatment of tumors and gastrointestinal obstruction. RSC Adv. 2022, 12, 12136–12144.

[191]

Lauwerends, L. J.; Galema, H. A.; Hardillo, J. A. U.; Sewnaik, A.; Monserez, D.; van Driel, P. B. A. A.; Verhoef, C.; de Jong, R. J. B.; Hilling, D. E.; Keereweer, S. Current intraoperative imaging techniques to improve surgical resection of laryngeal cancer: A systematic review. Cancers 2021, 13, 1895.

[192]

Yang, Q. L.; Hu, Z. B.; Zhu, S. J.; Ma, R.; Ma, H. L.; Ma, Z. R.; Wan, H.; Zhu, T.; Jiang, Z. Y.; Liu, W. Q. et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 2018, 140, 1715–1724.

[193]

Zhu, S. J.; Tian, R.; Antaris, A. L.; Chen, X. Y.; Dai, H. J. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 2019, 31, 1900321.

[194]

Hu, Z. H.; Fang, C.; Li, B.; Zhang, Z. Y.; Cao, C. G.; Cai, M. S.; Su, S.; Sun, X. W.; Shi, X. J.; Li, C. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 2020, 4, 259–271.

[195]

Ma, Z. R.; Wan, H.; Wang, W. Z.; Zhang, X. D.; Uno, T.; Yang, Q. L.; Yue, J. Y.; Gao, H. P.; Zhong, Y. T.; Tian, Y. et al. A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Res. 2019, 12, 273–279.

[196]

Zhang, X. N.; Li, S. S.; Ma, H. Z.; Wang, H.; Zhang, R. P.; Zhang, X. D. Activatable NIR-II organic fluorescent probes for bioimaging. Theranostics 2022, 12, 3345–3371.

[197]

Wang, F. F.; Ren, F. Q.; Ma, Z. R. , Qu, L. Q.; Gourgues, R. , Xu, C.; Baghdasaryan, A.; Li, J. C.; Zadeh, I. E.; Los, J. W. N. et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 2022, 17, 653–660.

[198]

Basiri, A.; Rafique, M. Z. E.; Bai, J.; Choi, S.; Yao, Y. Ultrafast low-pump fluence all-optical modulation based on graphene-metal hybrid metasurfaces. Light Sci. Appl. 2022, 11, 102.

[199]

Xu, Y. Z.; Li, C. B.; Xu, R. H.; Zhang, N.; Wang, Z.; Jing, X. N.; Yang, Z. W.; Dang, D. F.; Zhang, P. F.; Meng, L. J. Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging. Chem. Sci. 2020, 11, 8157–8166.

[200]

Meng, X. Q.; Zhang, J. L.; Sun, Z. H.; Zhou, L. H.; Deng, G. J.; Li, S. P.; Li, W. J.; Gong, P.; Cai, L. T. Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy. Theranostics 2018, 8, 6025–6034.

[201]

Hua, S. Y.; Zhong, S. H.; Arami, H.; He, J.; Zhong, D. N.; Zhang, D. X.; Chen, X. Y.; Qian, J.; Hu, X. Y.; Zhou, M. Simultaneous deep tracking of stem cells by surface enhanced Raman imaging combined with single-cell tracking by NIR-II imaging in myocardial infarction. Adv. Funct. Mater. 2021, 31, 2100468.

[202]

Xia, W. W.; Sun, J. W.; Liu, W.; Liu, G.; Xu, X. Y.; Zeng, X. H.; He, J. H. Near-infrared photodetectors based on unique Fe2O3 nanorod array with multi-photon excitation. J. Alloys Compd. 2022, 914, 165275.

[203]

Sun, Y.; Zeng, X. D.; Xiao, Y. L.; Liu, C. H.; Zhu, H.; Zhou, H.; Chen, Z. Y.; Xu, F. C.; Wang, J. L.; Zhu, M. Y. et al. Novel dual-function near-infrared II fluorescence and PET probe for tumor delineation and image-guided surgery. Chem. Sci. 2018, 9, 2092–2097.

[204]

Bonis-O'Donnell, J. T. D.; Page, R. H.; Beyene, A. G.; Tindall, E. G.; McFarlane, I. R.; Landry, M. P. Dual near-infrared two-photon microscopy for deep-tissue dopamine nanosensor imaging. Adv. Funct. Mater. 2017, 27, 1702112.

[205]

Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941–946.

Nano Research
Pages 692-714
Cite this article:
Liu P, Zhao R, Li H, et al. Near-infrared-II deep tissue fluorescence microscopy and application. Nano Research, 2023, 16(1): 692-714. https://doi.org/10.1007/s12274-022-4836-y
Topics:

1561

Views

18

Crossref

12

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 07 June 2022
Revised: 26 July 2022
Accepted: 30 July 2022
Published: 27 September 2022
© Tsinghua University Press 2022
Return