AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Solvation chemistry of electrolytes for stable anodes of lithium metal batteries

Yaohui Huang1Bo Wen1Zhuoliang Jiang1Fujun Li1,2( )
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
Show Author Information

Graphical Abstract

Solvation structure is the key of electrolyte engineering, which is composed of cations, anions, and additives. Solvation structures of electrolytes can be tuned via concentration and composition regulations and significantly affect electrolyte properties and interfacial reactions in lithium metal batteries.

Abstract

Lithium metal batteries (LMBs) have gained increasing attention owing to high energy density for large-scale energy storage applications. However, serious side reactions between Li anodes and organic electrolytes lead to low Columbic efficiency and Li dendrites. Although progress has been achieved in constructing electrode structures, the interfacial instability of Li anodes is still challenging. Solvation chemistry significantly affects the electrolyte properties and interfacial reactions, but the reaction mechanisms and the roles of each component in electrolytes are still vague. This review spotlights the recent development of electrolyte regulation with concentration and composition adjustments, aiming to understanding the correlation between solvation structures and Li anode stability. Further perspectives on the solvation design are provided in light of anode interfacial stability in LMBs.

References

[1]

Fan, E. S.; Li, L.; Wang, Z. P.; Lin, J.; Huang, Y. X.; Yao, Y.; Chen, R. J.; Wu, F. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chem. Rev. 2020, 120, 7020–7063.

[2]

Wang, C. C.; Wang, L. B.; Li, F. J.; Cheng, F. Y.; Chen, J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with Glyme-based electrolytes. Adv. Mater. 2017, 29, 1702212.

[3]

Luo, Z. Q.; Liu, L. J.; Ning, J. X.; Lei, K. X.; Lu, Y.; Li, F. J.; Chen, J. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 9443–9446.

[4]

Wang, L. B.; Ni, Y. X.; Hou, X. S.; Chen, L.; Li, F. J.; Chen, J. A two-dimensional metal–organic polymer enabled by robust nickel–nitrogen and hydrogen bonds for exceptional sodium-ion storage. Angew. Chem., Int. Ed. 2020, 59, 22126–22131.

[5]

Liu, Y. C.; Wang, C. C.; Zhao, S.; Zhang, L.; Zhang, K.; Li, F. J.; Chen, J. Mitigation of Jahn–Teller distortion and Na+/vacancy ordering in a distorted manganese oxide cathode material by Li substitution. Chem. Sci. 2021, 12, 1062–1067.

[6]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[7]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[8]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[9]

Wang, C. C.; Liu, L. J.; Zhao, S.; Liu, Y. C.; Yang, Y. B.; Yu, H. J.; Lee, S.; Lee, G. H.; Kang, Y. M.; Liu, R. et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat. Commun. 2021, 12, 2256.

[10]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

[11]

Du, D. F.; Zhu, Z.; Chan, K. Y.; Li, F. J.; Chen, J. Photoelectrochemistry of oxygen in rechargeable Li-O2 batteries. Chem. Soc. Rev. 2022, 51, 1846–1860.

[12]

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

[13]

Li, F. J.; Chen, J. Mechanistic evolution of aprotic lithium-oxygen batteries. Adv. Energy Mater. 2017, 7, 1602934.

[14]

Zhu, Z.; Lv, Q. L.; Ni, Y. X.; Gao, S. N.; Geng, J. R.; Liang, J.; Li, F. J. Internal electric field and interfacial bonding engineered step-scheme junction for a visible-light-involved lithium-oxygen battery. Angew. Chem., Int. Ed. 2022, 134, e202116699.

[15]

Lv, Q. L.; Zhu, Z.; Zhao, S.; Wang, L. B.; Zhao, Q.; Li, F. J.; Archer, L. A.; Chen, J. Semiconducting metal–organic polymer nanosheets for a photoinvolved Li-O2 battery under visible light. J. Am. Chem. Soc. 2021, 143, 1941–1947.

[16]

Li, F. J.; Zhang, T.; Yamada, Y.; Yamada, A.; Zhou, H. S. Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in Glymes. Adv. Energy Mater. 2013, 3, 532–538.

[17]

Fang, H. Y.; Gao, S. N.; Zhu, Z.; Ren, M.; Wu, Q.; Li, H. X.; Li, F. J. Recent progress and perspectives of sodium metal anodes for rechargeable batteries. Chem. Res. Chin. Univ. 2021, 37, 189–199.

[18]

Zhao, S.; Li, L.; Li, F. J.; Chou, S. L. Recent progress on understanding and constructing reliable Na anode for aprotic Na-O2 batteries: A mini review. Electrochem. Commun. 2020, 118, 106797.

[19]

Liang, Z. W.; Shen, J. D.; Xu, X. J.; Li, F. K.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 2022, 34, 2200102.

[20]

Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 2017, 29, 1700007.

[21]

Hobold, G. M.; Lopez, J.; Guo, R.; Minafra, N.; Banerjee, A.; Shirley Meng, Y.; Shao-Horn, Y.; Gallant, B. M. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 2021, 6, 951–960.

[22]

Yan, C.; Xu, R.; Xiao, Y.; Ding, J. F.; Xu, L.; Li, B. Q.; Huang, J. Q. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 2020, 30, 1909887.

[23]

Yang, Y.; Yao, S. Y.; Liang, Z. W.; Wen, Y. C.; Liu, Z. B.; Wu, Y. W.; Liu, J.; Zhu, M. A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries. ACS Energy Lett. 2022, 7, 885–896.

[24]

Zhang, D. C.; Liu, Z. B.; Wu, Y. W.; Ji, S. M.; Yuan, Z. X.; Liu, J.; Zhu, M. In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries. Adv. Sci. 2022, 9, 2104277.

[25]

Cao, W. Z.; Li, Q.; Yu, X. Q.; Li, H. Controlling Li deposition below the interface. eScience 2022, 2, 47–78.

[26]

Wang, H. S.; Yu, Z. A.; Kong, X.; Kim, S. C.; Boyle, D. T.; Qin, J.; Bao, Z. N.; Cui, Y. Liquid electrolyte: The nexus of practical lithium metal batteries. Joule 2022, 6, 588–616.

[27]

Zhou, X. Z.; Zhang, Q.; Zhu, Z.; Cai, Y. C.; Li, H. X.; Li, F. J. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angew. Chem. 2022, 134, e202205045.

[28]

Lin, D. C.; Liu, Y. Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res. 2017, 10, 4003–4026.

[29]

Xu, R.; Cheng, X. B.; Yan, C.; Zhang, X. Q.; Xiao, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Artificial interphases for highly stable lithium metal anode. Matter 2019, 1, 317–344.

[30]

Zheng, X. Y.; Huang, L. Q.; Ye, X. L.; Zhang, J. X.; Min, F. Y.; Luo, W.; Huang, Y. H. Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 2021, 7, 2312–2346.

[31]

Zhang, S. C.; Li, S. Y.; Lu, Y. Y. Designing safer lithium-based batteries with nonflammable electrolytes: A review. eScience 2021, 1, 163–177.

[32]

Zhao, S.; Wang, C. C.; Du, D. F.; Li, L.; Chou, S. L.; Li, F. J.; Chen, J. Bifunctional effects of cation additive on Na-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 3205–3211.

[33]

Wang, Z. S.; Wang, H. P.; Qi, S. H.; Wu, D. X.; Huang, J. D.; Li, X.; Wang, C. Y.; Ma, J. M. Structural regulation chemistry of lithium ion solvation for lithium batteries. EcoMat 2022, 4, e12200.

[34]

Xu, R.; Yan, C.; Huang, J. Q. Competitive solid-electrolyte interphase formation on working lithium anodes. Trends Chem. 2021, 3, 5–14.

[35]

Hu, J. T.; Ji, Y. C.; Zheng, G. R.; Huang, W. Y.; Lin, Y.; Yang, L. Y.; Pan, F. Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration. Aggregate 2022, 3, e153.

[36]

Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

[37]

Zheng, J.; Fan, X. L.; Ji, G. B.; Wang, H. Y.; Hou, S.; DeMella, K. C.; Raghavan, S. R.; Wang, J.; Xu, K.; Wang, C. S. Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries. Nano Energy 2018, 50, 431–440.

[38]

Wang, J. H.; Zheng, Q. F.; Fang, M. M.; Ko, S.; Yamada, Y.; Yamada, A. Concentrated electrolytes widen the operating temperature range of lithium-ion batteries. Adv. Sci. 2021, 8, 2101646.

[39]

Yamada, Y. Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries. Electrochemistry 2017, 85, 559–565.

[40]

Zheng, J. M.; Lochala, J. A.; Kwok, A.; Deng, Z. D.; Xiao, J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Adv. Sci. 2017, 4, 1700032.

[41]

Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

[42]

Yamada, Y.; Yamada, A. Review-superconcentrated electrolytes for lithium batteries. J. Electrochem. Soc. 2015, 162, A2406–A2423.

[43]

Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.

[44]

Pham, T. D.; Bin Faheem, A.; Lee, K. K. Design of a LiF-rich solid electrolyte interphase layer through highly concentrated LiFSI-THF electrolyte for stable lithium metal batteries. Small 2021, 17, 2103375.

[45]

Xiao, D. J.; Li, Q.; Luo, D.; Gao, R.; Li, Z. Q.; Feng, M.; Or, T.; Shui, L. L.; Zhou, G. F.; Wang, X. et al. Establishing the preferential adsorption of anion-dominated solvation structures in the electrolytes for high-energy-density lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2011109.

[46]

Fujii, K.; Wakamatsu, H.; Todorov, Y.; Yoshimoto, N.; Morita, M. Structural and electrochemical properties of Li ion solvation complexes in the salt-concentrated electrolytes using an aprotic donor solvent, N,N-dimethylformamide. J. Phys. Chem. C 2016, 120, 17196–17204.

[47]

Nojabaee, M.; Kopljar, D.; Wagner, N.; Friedrich, K. A. Understanding the nature of solid-electrolyte interphase on lithium metal in liquid electrolytes: A review on growth, properties, and application-related challenges. Batter. Supercaps 2021, 4, 909–922.

[48]

Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

[49]

Suo, L. M.; Xue, W. J.; Gobet, M.; Greenbaum, S. G.; Wang, C.; Chen, Y. M.; Yang, W. L.; Li, Y. X.; Li, J. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA 2018, 115, 1156–1161.

[50]

Hu, Y. S.; Lu, Y. X. The mystery of electrolyte concentration: From superhigh to ultralow. ACS Energy Lett. 2020, 5, 3633–3636.

[51]

Kwak, W. J.; Chae, S.; Feng, R. Z.; Gao, P. Y.; Read, J.; Engelhard, M. H.; Zhong, L. R.; Xu, W.; Zhang, J. G. Optimized electrolyte with high electrochemical stability and oxygen solubility for lithium-oxygen and lithium-air batteries. ACS Energy Lett. 2020, 5, 2182–2190.

[52]

Cao, X.; Jia, H.; Xu, W.; Zhang, J. G. Review-localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 2021, 168, 010522.

[53]

Zheng, J. M.; Chen, S. R.; Zhao, W. G.; Song, J. H.; Engelhard, M. H.; Zhang, J. G. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 2018, 3, 315–321.

[54]

Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

[55]

Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

[56]

Piao, N.; Ji, X.; Xu, H.; Fan, X. L.; Chen, L.; Liu, S. F.; Garaga, M. N.; Greenbaum, S. G.; Wang, L.; Wang, C. S. et al. Countersolvent electrolytes for lithium-metal batteries. Adv. Energy Mater. 2020, 10, 1903568.

[57]

Liang, Z. J.; Zou, Q. L.; Xie, J.; Lu, Y. C. Suppressing singlet oxygen generation in lithium-oxygen batteries with redox mediators. Energy Environ. Sci. 2020, 13, 2870–2877.

[58]

Lai, J. N.; Xing, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. J. Electrolytes for rechargeable lithium-air batteries. Angew. Chem., Int. Ed. 2020, 59, 2974–2997.

[59]

Li, C. L.; Huang, G.; Yu, Y.; Xiong, Q.; Yan, J. M.; Zhang, X. B. A low-volatile and durable deep eutectic electrolyte for high-performance lithium-oxygen battery. J. Am. Chem. Soc. 2022, 144, 5827–5833.

[60]

Guo, H. P.; Luo, W. B.; Chen, J.; Chou, S. L.; Liu, H. K.; Wang, J. Z. Review of electrolytes in nonaqueous lithium-oxygen batteries. Adv. Sustainable Syst. 2018, 2, 1700183.

[61]

Marangon, V.; Hernandez-Rentero, C.; Levchenko, S.; Bianchini, G.; Spagnolo, D.; Caballero, A.; Morales, J.; Hassoun, J. Lithium-oxygen battery exploiting highly concentrated Glyme-based electrolytes. ACS Appl. Energy Mater. 2020, 3, 12263–12275.

[62]

Zhao, Q.; Zhang, Y. H.; Sun, G. R.; Cong, L. N.; Sun, L. Q.; Xie, H. M.; Liu, J. Binary mixtures of highly concentrated tetraglyme and hydrofluoroether as a stable and nonflammable electrolyte for Li-O2 batteries. ACS Appl. Mater. Interfaces 2018, 10, 26312–26319.

[63]

Kwak, W. J.; Lim, H. S.; Gao, P. Y.; Feng, R. Z.; Chae, S.; Zhong, L. R.; Read, J.; Engelhard, M. H.; Xu, W.; Zhang, J. G. Effects of fluorinated diluents in localized high-concentration electrolytes for lithium-oxygen batteries. Adv. Funct. Mater. 2021, 31, 2002927.

[64]

Wu, F. X.; Chu, F. L.; Ferrero, G. A.; Sevilla, M.; Fuertes, A. B.; Borodin, O.; Yu, Y.; Yushin, G. Boosting high-performance in lithium-sulfur batteries via dilute electrolyte. Nano Lett. 2020, 20, 5391–5399.

[65]

Liu, T.; Li, H. J.; Yue, J. M.; Feng, J. N.; Mao, M. L.; Zhu, X. Z.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells. Angew. Chem. 2021, 133, 17688–17696.

[66]

Li, F. J.; Zhang T.; Zhou H. S. Challenges of non-aqueous Li–O2 batteries: Electrolytes, catalysts, and anodes. Energy Environ. Sci. 2013, 6, 1125–1141.

[67]

Zheng, H.; Xiang, H. F.; Jiang, F. Y.; Liu, Y. C.; Sun, Y.; Liang, X.; Feng, Y. Z.; Yu, Y. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Adv. Energy Mater. 2020, 10, 2001440.

[68]

Jiang, Z. P.; Zeng, Z. Q.; Zhang, H.; Yang, L.; Hu, W.; Liang, X. M.; Feng, J. W.; Yu, C.; Cheng, S. J.; Xie, J. Low concentration electrolyte with non-solvating cosolvent enabling high-voltage lithium metal batteries. iScience 2022, 25, 103490.

[69]

Ding, J. F.; Xu, R.; Yan, C.; Li, B. Q.; Yuan, H.; Huang, J. Q. A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J. Energy Chem. 2021, 59, 306–319.

[70]

Xu, R.; Ding, J. F.; Ma, X. X.; Yan, C.; Yao, Y. X.; Huang, J. Q. Designing and demystifying the lithium metal interface toward highly reversible batteries. Adv. Mater. 2021, 33, 2105962.

[71]

Ding, J. F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Xie, J.; Huang, J. Q. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 11442–11447.

[72]

Holoubek, J.; Liu, H. D.; Wu, Z. H.; Yin, Y. J.; Xing, X.; Cai, G. R.; Yu, S. C.; Zhou, H. Y.; Pascal, T. A.; Chen, Z. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 2021, 6, 303–313.

[73]

Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

[74]

Wang, H. S.; Yu, Z. A.; Kong, X.; Huang, W.; Zhang, Z. W.; Mackanic, D. G.; Huang, X. Y.; Qin, J.; Bao, Z. N.; Cui, Y. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Adv. Mater. 2021, 33, 2008619.

[75]

Yu, Z. A.; Rudnicki, P. E.; Zhang, Z. W.; Huang, Z. J.; Celik, H.; Oyakhire, S. T.; Chen, Y. L.; Kong, X.; Kim, S. C.; Xiao, X. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 2022, 7, 94–106.

[76]

Wang, Q. D.; Yao, Z. P.; Zhao, C. L.; Verhallen, T.; Tabor, D. P.; Liu, M.; Ooms, F.; Kang, F. Y.; Aspuru-Guzik, A.; Hu, Y. S. et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 2020, 11, 4188.

[77]

Wang, X. S.; Wang, S. W.; Wang, H. R.; Tu, W. Q.; Zhao, Y.; Li, S.; Liu, Q.; Wu, J. R.; Fu, Y. Z.; Han, C. P. et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 2021, 33, 2007945.

[78]

Pham, T. D.; Bin Faheem, A.; Chun, S. Y.; Rho, J. R.; Kwak, K.; Lee, K. K. Synergistic effects on lithium metal batteries by preferential ionic interactions in concentrated bisalt electrolytes. Adv. Energy Mater. 2021, 11, 2003520.

[79]

Yu, Y.; Huang, G.; Du, J. Y.; Wang, J. Z.; Wang, Y.; Wu, Z. J.; Zhang, X. B. A renaissance of N,N-dimethylacetamide-based electrolytes to promote the cycling stability of Li-O2 batteries. Energy Environ. Sci. 2020, 13, 3075–3081.

[80]

Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C. M.; Rodriguez-Martínez, L. M.; Armand, M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives. Angew. Chem., Int. Ed. 2018, 57, 15002–15027.

[81]

Gu, S. C.; Zhang, S. W.; Han, J. W.; Deng, Y. Q.; Luo, C.; Zhou, G. M.; He, Y. B.; Wei, G. D.; Kang, F. Y.; Lv, W. et al. Nitrate additives coordinated with crown ether stabilize lithium metal anodes in carbonate electrolyte. Adv. Funct. Mater. 2021, 31, 2102128.

[82]

Jie, Y. L.; Liu, X. J.; Lei, Z. W.; Wang, S. Y.; Chen, Y. W.; Huang, F. Y.; Cao, R. G.; Zhang, G. Q.; Jiao, S. H. Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. 2020, 132, 3533–3538.

[83]

Li, F.; Liu, J. D.; He, J.; Hou, Y. Y.; Wang, H. P.; Wu, D. X.; Huang, J. D.; Ma, J. M. Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis. Angew. Chem. 2022, 134, e202205091.

[84]

Li, X.; Zhao, R. X.; Fu, Y. Z.; Manthiram, A. Nitrate additives for lithium batteries: Mechanisms, applications, and prospects. eScience 2021, 1, 108–123.

[85]

Zhang, S. M.; Yang, G. J.; Liu, Z. P.; Li, X. Y.; Wang, X. F.; Chen, R. J.; Wu, F.; Wang, Z. X.; Chen, L. Q. Competitive solvation enhanced stability of lithium metal anode in dual-salt electrolyte. Nano Lett. 2021, 21, 3310–3317.

[86]

Zhang, X. Q.; Chen, X.; Hou, L. P.; Li, B. Q.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett. 2019, 4, 411–416.

[87]

Piao, Z. H.; Xiao, P. T.; Luo, R. P.; Ma, J. B.; Gao, R. H.; Li, C.; Tan, J. Y.; Yu, K.; Zhou, G. M.; Cheng, H. M. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 2022, 34, 2108400.

[88]

Yan, C.; Yao, Y. X.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem., Int. Ed. 2018, 57, 14055–14059.

[89]

Lu, Z. Y.; Guo, Y.; Zhang, S. W.; Wu, S. C.; Meng, R. W.; Hong, S.; Li, J. X.; Xue, H. Y.; Zhang, B. Y.; Fan, D. H. et al. Crowning metal ions by supramolecularization as a general remedy toward a dendrite-free alkali-metal battery. Adv. Mater. 2021, 33, 2101745.

[90]

Li, F.; He, J.; Liu, J. D.; Wu, M. G.; Hou, Y. Y.; Wang, H. P.; Qi, S. H.; Liu, Q. H.; Hu, J. W.; Ma, J. M. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 6600–6608.

Nano Research
Pages 8072-8081
Cite this article:
Huang Y, Wen B, Jiang Z, et al. Solvation chemistry of electrolytes for stable anodes of lithium metal batteries. Nano Research, 2023, 16(6): 8072-8081. https://doi.org/10.1007/s12274-022-4839-8
Topics:
Part of a topical collection:

2108

Views

24

Crossref

19

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 22 June 2022
Revised: 27 July 2022
Accepted: 01 August 2022
Published: 21 September 2022
© Tsinghua University Press 2022
Return