AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oriented magnetic liquid metal-filled interlocked bilayer films as multifunctional smart electromagnetic devices

Jinjin LiYue ZhangXufeng LiChunyan ChenHaihan ZouPeng Yi( )Xiaofang Liu( )Ronghai Yu
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Show Author Information

Graphical Abstract

Switchable electromagnetic interference shielding material, electromagnetic signal-based pressure sensor, and electrical signal-based magnetic sensor are fabricated using interlocked bilayer films filled with oriented magnetic liquid metal.

Abstract

Smart electromagnetic functional devices prepared based on electromagnetic wave responsive materials will provide more convenience for human life in the future. Here, we prepare oriented magnetic liquid metal droplet-filled polydimethylsiloxane films with micropillar array patterned surfaces, and further assemble them into bilayer films with interlocked structures. Once compressed, the increase in conductivity of the film due to the tunneling effect between microarrays and the elongation of liquid metal droplets leads to a rapid increase in electromagnetic interference shielding performance. Accordingly, a tunable electromagnetic interference shielding material with high sensitivity and wide control range is obtained, which has potential applications in electromagnetic wave control systems and intelligent electromagnetic protection systems. Meanwhile, we assemble a strain sensor and a magnetic sensor, which can precisely sense pressure and magnetic field according to changes in electromagnetic signal and electrical signal, respectively.

Electronic Supplementary Material

Download File(s)
12274_2022_4843_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

[2]

Zhao, Z. H.; Lan, D.; Zhang, L. M.; Wu, H. J. A flexible, mechanically strong, and anti-corrosion electromagnetic wave absorption composite film with periodic electroconductive patterns. Adv. Funct. Mater. 2022, 32, 2111045.

[3]

Hao, H. L.; Hui, D.; Lau, D. Material advancement in technological development for the 5G wireless communications. Nanotechnol. Rev. 2020, 9, 683–699.

[4]

Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

[5]

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

[6]

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

[7]

Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157.

[8]

Wu, F.; Sun, M. X.; Chen, C. C.; Zhou, T.; Xia, Y. L.; Xie, A. M.; Shang, Y. F. Controllable coating of polypyrrole on silicon carbide nanowires as a core−shell nanostructure: A facile method to enhance attenuation characteristics against electromagnetic radiation. ACS Sustainable Chem. Eng. 2019, 7, 2100–2106.

[9]

Li, Q. H.; Li, Z.; Zhang, Q. H.; Zheng, L. R.; Yan, W. S.; Liang, X.; Gu, L.; Chen, C.; Wang, D. S.; Peng, Q. et al. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Res. 2021, 14, 1435–1442.

[10]

Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic−inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

[11]

Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

[12]

Song, Z. M.; Liu, X. F.; Sun, X.; Li, Y.; Nie, X. Y.; Tang, W. K.; Yu, R. H.; Shui, J. L. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance. Carbon 2019, 151, 36–45.

[13]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[14]

Shi, Y. P.; Li, D.; Si, H. X.; Jiang, Z. Y.; Li, M. Y.; Gong, C. H. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2022, 130, 249–255.

[15]

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

[16]

Song, Z. M.; Sun, X.; Li, Y.; Tang, W. K.; Liu, G. L.; Shui, J. L.; Liu, X. F.; Yu, R. H. Carbon fibers embedded with aligned magnetic particles for efficient electromagnetic energy absorption and conversion. ACS Appl. Mater. Interfaces 2021, 13, 5266–5274.

[17]

Shi, Y. P.; Li, D.; Si, H. X.; Duan, Y. P.; Gong, C. H.; Zhang, J. W. TiN/Fe2Ni2N/SiO2 composites for magnetic-dielectric balance to facilitate temperature-stable broadband microwave absorption. J. Alloys Compd. 2022, 918, 165603.

[18]

Jia, Z. R.; Kong, M. Y.; Yu, B. W.; Ma, Y. Z.; Pan, J. Y.; Wu, G. L. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 2022, 127, 153–163.

[19]

Wang, C.; Murugadoss, V.; Kong, J.; He, Z. F.; Mai, X. M.; Shao, Q.; Chen, Y. J.; Guo, L.; Liu, C. T.; Angaiah, S. et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140, 696–733.

[20]

Zhang, X.; Tian, X. L.; Liu, C.; Qiao, J.; Liu, W.; Liu, J. R.; Zeng, Z. H. MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon 2022, 194, 257–266.

[21]

Liu, Y.; Zeng, Z. H.; Zheng, S. N.; Qiao, J.; Liu, W.; Wu, L. L.; Liu, J. R. Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocomposite fibers for electromagnetic wave absorption. Compos. Part B:Eng. 2022, 235, 109800.

[22]

Song, Y. H.; Liu, X. H.; Gao, Z. G.; Wang, Z. D.; Hu, Y. H.; Yang, K.; Zhao, Z. H.; Lan, D.; Wu, G. L. Core−shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 620, 263–272.

[23]

Balci, O.; Polat, E. O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 2015, 6, 6628.

[24]

Zhang, Q.; Liang, Q. J.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Ding, Y.; Ma, M. Y.; Gao, F. F.; Zhao, X.; Zhang, Y. Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 2018, 28, 1703801.

[25]

Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

[26]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

[27]

Wang, D. C.; Yu, H. Y.; Jiang, L. R.; Qi, D. M.; Zhang, X. X.; Chen, L. M.; Lv, W. T.; Xu, W. Q.; Tam, K. C. Flexible, anti-damage, and non-contact sensing electronic skin implanted with MWCNT to block public pathogens contact infection. Nano Res. 2022, 15, 2616–2625.

[28]

Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

[29]

Li, D. Y.; Liu, L. X.; Wang, Q. W.; Zhang, H. B.; Chen, W.; Yin, G.; Yu, Z. Z. Functional polyaniline/MXene/cotton fabrics with acid/alkali-responsive and tunable electromagnetic interference shielding performances. ACS Appl. Mater. Interfaces 2022, 14, 12703–12712.

[30]

Zhu, R. Q.; Li, Z. Y.; Deng, G.; Yu, Y. H.; Shui, J. L.; Yu, R. H.; Pan, C. F.; Liu, X. F. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700.

[31]

Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.

[32]

Zhang, W. Y.; Zhang, X. P.; Wu, Z. F.; Abdurahman, K.; Cao, Y. L.; Duan, H. M.; Jia, D. Z. Mechanical, electromagnetic shielding and gas sensing properties of flexible cotton fiber/polyaniline composites. Compos. Sci. Technol. 2020, 188, 107966.

[33]

Yang, M.; Yang, Z. J.; Lv, C.; Wang, Z.; Lu, Z.; Lu, G. Y.; Jia, X. T.; Wang, C. Electrospun bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing. Compos. Sci. Technol. 2022, 221, 109313.

[34]

Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.

[35]

Sang, M.; Zhang, J. S.; Liu, S.; Zhou, J. Y.; Wang, Y.; Deng, H. X.; Li, J.; Li, J.; Xuan, S. H.; Gong, X. L. Advanced MXene/shear stiffening composite-based sensor with high-performance electromagnetic interference shielding and anti-impacting Bi-protection properties for smart wearable device. Chem. Eng. J. 2022, 440, 135869.

[36]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core−shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[37]

Hu, L. Z.; Wu, H. Z.; Zhang, Q. S.; You, H. R.; Jiao, J.; Luo, H. S.; Wang, Y. J.; Gao, A. R.; Duan, C. G. Self-powered energy-harvesting magnetic field sensor. Appl. Phys. Lett. 2022, 120, 043902.

[38]

Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

[39]

Lv, H. L.; Yang, Z. H.; Ong, S. J. H.; Wei, C.; Liao, H. B.; Xi, S. B.; Du, Y. H.; Ji, G. B.; Xu, Z. J. A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 2019, 29, 1900163.

[40]

Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

[41]
Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202204499.
[42]
Zeng, Z. H.; Qiao, J.; Zhang, R. N.; Liu, J. R.; Nyström, G. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, in press, https://doi.org/10.1002/smm2.1118.
[43]

Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

[44]

Ren, L.; Sun, S. S.; Casillas-Garcia, G.; Nancarrow, M.; Peleckis, G.; Turdy, M.; Du, K. R.; Xu, X.; Li, W. H.; Jiang, L. et al. A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive electrodes. Adv. Mater. 2018, 30, 1802595.

[45]

Yun, G. L.; Tang, S. Y.; Sun, S. S.; Yuan, D.; Zhao, Q. B.; Deng, L.; Yan, S.; Du, H. P.; Dickey, M. D.; Li, W. H. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat. Commun. 2019, 10, 1300.

[46]

Hu, L.; Wang, H. Z.; Wang, X. F.; Liu, X.; Guo, J. R.; Liu, J. Magnetic liquid metals manipulated in the three-dimensional free space. ACS Appl. Mater. Interfaces 2019, 11, 8685–8692.

[47]

Lee, Y.; Park, J.; Cho, S.; Shin, Y. E.; Lee, H.; Kim, J.; Myoung, J.; Cho, S.; Kang, S.; Baig, C. et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 2018, 12, 4045–4054.

[48]

Zeng, Z. H.; Jiang, F. Z.; Yue, Y.; Han, D. X.; Lin, L. C.; Zhao, S. Y.; Zhao, Y. B.; Pan, Z. Y.; Li, C. J.; Nyström, G. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 2020, 32, 1908496.

[49]

Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

[50]

Yao, B.; Hong, W.; Chen, T. W.; Han, Z. B.; Xu, X. W.; Hu, R. C.; Hao, J. Y.; Li, C. H.; Li, H.; Perini, S. E. et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 2020, 32, 1907499.

[51]

Wang, G. Q.; Yi, D.; Jia, X. C.; Chen, J. L.; Shen, B.; Zheng, W. G. Structural design of compressible shape-memory foams for smart self-fixable electromagnetic shielding with reduced reflection. Mater. Today Phys. 2022, 22, 100612.

[52]

Yao, B.; Xu, X. W.; Li, H.; Han, Z. B.; Hao, J. Y.; Yang, G.; Xie, Z. X.; Chen, Y. T.; Liu, W. S.; Wang, Q. et al. Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem. Eng. J. 2021, 410, 128288.

[53]

Zhu, S.; Zhou, Q. Y.; Wang, M. Y.; Dale, J.; Qiang, Z.; Fan, Y. C.; Zhu, M. F.; Ye, C. H. Modulating electromagnetic interference shielding performance of ultra-lightweight composite foams through shape memory function. Compos. Part B:Eng. 2021, 204, 108497.

[54]

Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chem. Eng. J. 2021, 405, 126927.

[55]

Shen, B.; Li, Y.; Zhai, W. T.; Zheng, W. G. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057.

[56]

Bera, R.; Maitra, A.; Paria, S.; Karan, S. K.; Das, A. K.; Bera, A.; Si, S. K.; Halder, L.; De, A.; Khatua, B. B. An approach to widen the electromagnetic shielding efficiency in PDMS/ferrous ferric oxide decorated RGO-SWCNH composite through pressure induced tunability. Chem. Eng. J. 2018, 335, 501–509.

[57]

Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932–940.

[58]

Hou, C.; Tai, G. A.; Liu, B.; Wu, Z. H.; Yin, Y. H. Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 2021, 14, 2337–2344.

[59]

Gao, L. B.; Cao, K.; Hu, X. K.; Xiao, R.; Gan, B.; Wang, W. D.; Lu, Y. Nano electromechanical approach for flexible piezoresistive sensor. Appl. Mater. Today 2020, 18, 100475.

[60]

Kim, H.; Kim, G.; Kim, T.; Lee, S.; Kang, D.; Hwang, M. S.; Chae, Y.; Kang, S.; Lee, H.; Park, H. G. et al. Transparent, flexible, conformal capacitive pressure sensors with nanoparticles. Small 2018, 14, 1703432.

[61]

Hao, L.; Chen, Y. F.; Gao, Z. Q.; Wen, Z.; Sun, X. H. Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 2021, 9, 20100–20130.

[62]

Ripka, P.; Janosek, M. Advances in magnetic field sensors. IEEE Sens. J. 2010, 10, 1108–1116.

[63]

Yang, Y.; Lin, L.; Zhang, Y.; Jing, Q. S.; Hou, T. C.; Wang, Z. L. Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano 2012, 6, 10378–10383.

[64]

Cai, J. Y.; Du, M. J.; Li, Z. L. Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 2022, 7, 2101182.

[65]

Duan, Z. H.; Jiang, Y. D.; Tai, H. L. Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 2021, 9, 14963–14980.

[66]

Jeong, W.; Song, J.; Bae, J.; Nandanapalli, K. R.; Lee, S. Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 2019, 11, 44758–44763.

[67]

Bhardwaj, R.; Hazra, A. MXene-based gas sensors. J. Mater. Chem. C 2021, 9, 15735–15754.

[68]

Wang, T.; Guo, Y. L.; Wan, P. B.; Zhang, H.; Chen, X. D.; Sun, X. M. Flexible transparent electronic gas sensors. Small 2016, 12, 3748–3756.

Nano Research
Pages 1764-1772
Cite this article:
Li J, Zhang Y, Li X, et al. Oriented magnetic liquid metal-filled interlocked bilayer films as multifunctional smart electromagnetic devices. Nano Research, 2023, 16(1): 1764-1772. https://doi.org/10.1007/s12274-022-4843-z
Topics:
Part of a topical collection:

1000

Views

23

Crossref

16

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 25 June 2022
Revised: 28 July 2022
Accepted: 30 July 2022
Published: 13 September 2022
© Tsinghua University Press 2022
Return