AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single-step nano-engineering of multiple micro-rough metals via anodization

Divya ChopraTianqi GuoSašo Ivanovski( )Karan Gulati( )
The University of Queensland, School of Dentistry, Herston QLD 4006, Australia
Show Author Information

Graphical Abstract

Various micro-rough curved metal surfaces are nano-engineered via anodization using a single electrolyte and similar conditions at room temperature.

Abstract

Anodization is a cost-effective technique to nano-engineer various metals, however, optimizations have been mostly restricted to Al and Ti, and for easy to manage polished and flat substrates, limiting industrial translation. Here, we aim at standardizing and simplifying anodization of ten metals, attempting to make metal nano-engineering more accessible. In a world-first attempt, we synthesize a standard electrolyte to fabricate controlled nanostructures on various metals, taking a close look at the influence of the substrate topography, electrolyte composition, and electrolyte aging (repeated use of same electrolyte) towards designing a standard nano-engineering strategy. Anodization of curved substrates (metal wires) with micro-roughness allows for ease of industrial translation across various applications. This study is a step closer to standardizing anodization and fabrication of controlled nanotopography on various metallic surfaces, while maintaining scalability and ease of use.

Electronic Supplementary Material

Download File(s)
12274_2022_4847_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Blawert, C.; Dietzel, W.; Ghali, E.; Song, G. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Adv. Eng. Mater. 2006, 8, 511–533.

[2]
Brunette, D. M.; Tengvall, P.; Textor, M.; Thomsen, P. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications; Springer: Berlin, 2012.
[3]
Bengough, G.; Stuart, J. Improved process of protecting surfaces of aluminium of aluminium alloys. GB223994, November 03, 1923.
[4]

Saji, V. S. Superhydrophobic surfaces and coatings by electrochemical anodic oxidation and plasma electrolytic oxidation. Adv. Colloid Interface Sci. 2020, 283, 102245.

[5]

Sheasby, P. G.; Cooke, W. E. The electrolytic colouring of anodized aluminium. Trans. Inst. Met. 1974, 52, 103–106.

[6]

Nishio, K.; Masuda, H. Anodization of gold in oxalate solution to form a nanoporous black film. Angew. Chem., Int. Ed. 2011, 123, 1641–1645.

[7]

Lee, C. Y.; Lee, K.; Schmuki, P. Anodic formation of self formation cobalt oxide nanoporous layers. Angew. Chem., Int. Ed. 2013, 125, 2131–2135.

[8]

Albu, S. P.; Ghicov, A.; Schmuki, P. High aspect ratio, self aspect iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes. Phys. Status Solidi Rapid Res. Lett. 2009, 3, 64–66.

[9]

Berger, S.; Jakubka, F.; Schmuki, P. Self-ordered hexagonal nanoporous hafnium oxide and transition to aligned HfO2 nanotube layers. Electrochem. Solid State Lett. 2009, 12, K45.

[10]

Pandey, B.; Thapa, P. S.; Higgins, D. A.; Ito, T. Formation of self-organized nanoporous anodic oxide from metallic gallium. Langmuir 2012, 28, 13705–13711.

[11]

Wei, W.; Macak, J. M.; Schmuki, P. High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta. Electrochem. Commun. 2008, 10, 428–432.

[12]

Chopra, D.; Gulati, K.; Ivanovski, S. Towards clinical translation: Optimized fabrication of controlled nanostructures on implant-relevant curved zirconium surfaces. Nanomaterials (Basel) 2021, 11, 868.

[13]

Singh, S.; Festin, M.; Barden, W. R. T.; Xi, L.; Francis, J. T.; Kruse, P. Universal method for the fabrication of detachable ultrathin films of several transition metal oxides. ACS Nano 2008, 2, 2363–2373.

[14]

Sieber, I.; Hildebrand, H.; Friedrich, A.; Schmuki, P. Formation of self-organized niobium porous oxide on niobium. Electrochem. Commun. 2005, 7, 97–100.

[15]

Yang, Y.; Albu, S. P.; Kim, D.; Schmuki, P. Enabling the anodic growth of highly ordered V2O5 nanoporous/nanotubular structures. Angew. Chem., Int. Ed. 2011, 50, 9071–9075.

[16]

Nishikawa, H.; Minami, S. I. Influence of water in NaH2PO4 ethylene glycol on the type and the formation kinetics of anodic films of lanthanum. Electrochim. Acta 1982, 27, 1351–1356.

[17]

Kang, J. S.; Kim, J.; Lee, M. J.; Son, Y. J.; Chung, D. Y.; Park, S.; Jeong, J.; Yoo, J. M.; Shin, H.; Choe, H. et al. Electrochemically synthesized nanoporous molybdenum carbide as a durable electrocatalyst for hydrogen evolution reaction. Adv. Sci. 2018, 5, 1700601.

[18]

Gulati, K.; Santos, A.; Findlay, D.; Losic, D. Optimizing anodization conditions for the growth of titania nanotubes on curved surfaces. J. Phys. Chem. C 2015, 119, 16033–16045.

[19]

Lee, J. W.; Park, S. J.; Choi, W. S.; Shin, H. C. Well-defined meso-to macro-porous film of tin oxides formed by an anodization process. Electrochim. Acta 2011, 56, 5919–5925.

[20]

Basu, P. K.; Saha, N.; Maji, S.; Saha, H.; Basu, S. Nanoporous ZnO thin films deposited by electrochemical anodization: effect of UV light. J. Mater. Sci. Mater. Electron. 2008, 19, 493–499.

[21]

Guo, T. Q.; Oztug, N. A. K.; Han, P. P.; Ivanovski, S.; Gulati, K. Old is gold:Electrolyte aging influences the topography, chemistry, and bioactivity of anodized TiO2 nanopores. ACS Appl. Mater. Interfaces 2021, 13, 7897–7912.

[22]

Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 2011, 50, 2904–2939.

[23]

Batista-Grau, P.; Fernández-Domene, R. M.; Sánchez-Tovar, R.; García-Antón, J. Control on the morphology and photoelectrocatalytic properties of ZnO nanostructures by simple anodization varying electrolyte composition. J. Electroanal. Chem. 2021, 880, 114933.

[24]

Stępniowski, W. J.; Moneta, M.; Norek, M.; Michalska-Domańska, M.; Scarpellini, A.; Salerno, M. The influence of electrolyte composition on the growth of nanoporous anodic alumina. Acta 2016, 211, 453–460.

[25]

Yue, H. R.; Zhao, Y. J.; Ma, X. B.; Gong, J. L. Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 2012, 41, 4218–4244.

[26]
Acton, Q. A. Polyethylene Glycols-Advances in Research and Application: 2013 Edition; Scholarly Editions, 2013.
[27]

Santambrogio, M.; Perrucci, G.; Trueba, M.; Trasatti, S. P.; Casaletto, M. P. Effect of major degradation products of ethylene glycol aqueous solutions on steel corrosion. Electrochim. Acta 2016, 203, 439–450.

[28]

Allam, N. K.; Grimes, C. A. Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes. Mater. Lett. 2011, 65, 1949–1955.

[29]

Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 2009, 21, 3048–3055.

[30]

Chen, X. Y.; Zhang, P. F.; Liu, Y. C.; Wang, Z. M.; Huang, Y. Nanoconical active structures prepared by anodization and deoxidation of molybdenum foil and their activity origin. J. Alloys Compd. 2021, 851, 156896.

[31]

Radecka, M.; Wnuk, A.; Trenczek-Zajac, A.; Schneider, K.; Zakrzewska, K. TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting. Int. J. Hydrogen Energy 2015, 40, 841–851.

[32]

Guo, T. Q.; Oztug, N. A. K.; Han, P. P.; Ivanovski, S.; Gulati, K. Untwining the topography-chemistry interdependence to optimize the bioactivity of nano-engineered titanium implants. Appl. Surf. Sci. 2021, 570, 151083.

[33]

Rahman, S.; Gulati, K.; Kogawa, M.; Atkins, G. J.; Pivonka, P.; Findlay, D. M.; Losic, D. Drug diffusion, integration, and stability of nanoengineered drug-releasing implants in bone ex-vivo. J. Biomed. Mater. Res. A 2016, 104, 714–725.

[34]

Wu, S. Z.; Li, Y. R.; Chen, X. D.; Liu, J. Y.; Gao, J.; Li, G. H. Fabrication of WO3·2H2O nanoplatelet powder by breakdown anodization. Electrochem. Commun. 2019, 104, 106479.

[35]

Tello, A.; Boulett, A.; Sánchez, J.; Pizarro, G. D. C.; Soto, C.; Pérez, O. E. L.; Sanhueza, R.; Oyarzún, D. P. An unexplored strategy for synthesis of ZnO nanowire films by electrochemical anodization using an organic-based electrolyte. Morphological and optical properties characterization. Chem. Phys. Lett. 2021, 778, 138825.

[36]

Soaid, N. I.; Bashirom, N.; Rozana, M.; Lockman, Z. Formation of anodic zirconia nanotubes in fluorinated ethylene glycol electrolyte with K2CO3 addition. Surf. Coat. Technol. 2017, 320, 86–90.

[37]

Alsawat, M.; Altalhi, T.; Gulati, K.; Santos, A.; Losic, D. Synthesis of carbon nanotube-nanotubular titania composites by catalyst-free CVD Process: Insights into the formation mechanism and photocatalytic properties. ACS Appl. Mater. Interfaces 2015, 7, 28361–28368.

[38]

Gulati, K.; Li, T.; Ivanovski, S. Consume or conserve: Microroughness of titanium implants toward fabrication of dual micro-nanotopography. ACS Biomater. Sci. Eng. 2018, 4, 3125–3131.

[39]

Li, T.; Gulati, K.; Wang, N.; Zhang, Z. T.; Ivanovski, S. Bridging the gap: Optimized fabrication of robust titania nanostructures on complex implant geometries towards clinical translation. J. Colloid Interface Sci. 2018, 529, 452–463.

[40]

Chopra, D.; Gulati, K.; Ivanovski, S. Micro + nano: Conserving the gold standard microroughness to nanoengineer zirconium dental implants. ACS Biomater. Sci. Eng. 2021, 7, 3069–3074.

[41]

Gulati, K.; Prideaux, M.; Kogawa, M.; Lima-Marques, L.; Atkins, G. J.; Findlay, D. M.; Losic, D. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells. J. Tissue Eng. Regen. Med. 2017, 11, 3313–3325.

[42]

Chopra, D.; Gulati, K.; Ivanovski, S. Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Acta Biomater. 2021, 127, 80–101.

[43]

Gulati, K.; Martinez, R. D. O.; Czerwiński, M.; Michalska-Domańska, M. Understanding the influence of electrolyte aging in electrochemical anodization of titanium. Adv. Colloid Interface Sci. 2022, 302, 102615.

[44]

Berger, S.; Kunze, J.; Schmuki, P.; Valota, A. T.; LeClere, D. J.; Skeldon, P.; Thompson, G. E. Influence of water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes. J. Electrochem. Soc. 2010, 157, C18–C23.

[45]

Li, H. F.; Ding, M.; Jin, J.; Sun, D. E.; Zhang, S. M.; Jia, C. K.; Sun, L. D. Effect of electrolyte pretreatment on the formation of TiO2 nanotubes: An ignored yet non-negligible factor. Chem Electro Chem 2018, 5, 1006–1012.

[46]

Guo, T. Q.; Oztug, N. A. K.; Han, P. P.; Ivanovski, S.; Gulati, K. Influence of sterilization on the performance of anodized nanoporous titanium implants. Mater. Sci. Eng. C 2021, 130, 112429.

[47]

Gulati, K.; Moon, H.-J.; Kumar, P. T. S.; Han, P.; Ivanovski, S. Anodized anisotropic titanium surfaces for enhanced guidance of gingival fibroblasts. Mater. Sci. Eng. C 2020, 112, 110860.

[48]

Guo, T. Q.; Gulati, K.; Arora, H.; Han, P. P.; Fournier, B.; Ivanovski, S. Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomater. 2021, 124, 33–49.

[49]

Proost, J.; Vanhumbeeck, J. F.; Van Overmeere, Q. Instability of anodically formed TiO2 layers (revisited). Electrochim. Acta 2009, 55, 350–357.

[50]

Fan, M.; La Mantia, F. Effect of surface topography on the anodization of titanium. Electrochem. Commun. 2013, 37, 91–95.

[51]

Guo, T. Q.; Ivanovski, S.; Gulati, K. Fresh or aged: Short time anodization of titanium to understand the influence of electrolyte aging on titania nanopores. J. Mater. Sci. Technol. 2022, 119, 245–256.

[52]

Sopha, H.; Hromadko, L.; Nechvilova, K.; Macak, J. M. Effect of electrolyte age and potential changes on the morphology of TiO2 nanotubes. J. Electroanal. Chem. 2015, 759, 122–128.

[53]

Lee, K.; Kim, J.; Kim, H.; Lee, Y.; Tak, Y.; Kim, D.; Schmuki, P. Effect of electrolyte conductivity on the formation of a nanotubular TiO2 photoanode for a dye-sensitized solar cell. J. Korean Phys. Soc. 2009, 54, 1027–1031.

[54]

Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18.

[55]

Martinez-Marquez, D.; Gulati, K.; Carty, C. P.; Stewart, R. A.; Ivanovski, S. Determining the relative importance of titania nanotubes characteristics on bone implant surface performance: A quality by design study with a fuzzy approach. Mater. Sci. Eng. C 2020, 114, 110995.

[56]
Sulka, G. D. Highly ordered anodic porous alumina formation by selfly ordered anodizing. In Nanostructured Materials in Electrochemistry. Eftekhari, A. , Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2008; pp 1–116.
[57]

Martin, C. R. Nanomaterials: A membrane-based synthetic approach. Science 1994, 266, 1961–1966.

[58]

Keller, F.; Hunter, M. S.; Robinson, D. L. Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 1953, 100, 411.

[59]
Gulati, K.; Kogawa, M.; Maher, S.; Atkins, G.; Findlay, D.; Losic, D. Titania nanotubes for local drug delivery from implant surfaces. In Electrochemically Engineered Nanoporous Materials: Methods, Properties and Applications. Losic, D.; Santos, A. , Eds.; Springer International Publishing: Cham, 2015; pp 307–355.
[60]
Gulati, K.; Atkins, G.; Findlay, D.; Losic, D. Nano-engineered titanium for enhanced bone therapy. In Proceedings of SPIE 8812, Biosensing and Nanomedicine VI. San Diego, 2013.
[61]

Saji, V. S.; Kumeria, T.; Gulati, K.; Prideaux, M.; Rahman, S.; Alsawat, M.; Santos, A.; Atkins, G. J.; Losic, D. Localized drug delivery of selenium (Se) using nanoporous anodic aluminium oxide for bone implants. J. Mater. Chem. B 2015, 3, 7090–7098.

[62]

Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006, 5, 741–747.

[63]

Shingubara, S.; Morimoto, K.; Sakaue, H.; Takahagi, T. Self-organization of a porous alumina nanohole array using a sulfuric/oxalic acid mixture as electrolyte. ECS Solid State Lett. 2004, 7, E15.

[64]

Jerez, D. P. O.; Teijelo, M. L.; Cervantes, W. R.; Pérez, O. E. L.; Sánchez, J.; Pizarro, G. D. C.; Acosta, G.; Flores, M.; Arratia-Perez, R. Nanostructuring of anodic copper oxides in fluoride-containing ethylene glycol media. J. Electroanal. Chem. 2017, 807, 181–186.

[65]

Xie, K. Y.; Guo, M.; Huang, H. T.; Liu, Y. X. Fabrication of iron oxide nanotube arrays by electrochemical anodization. Corros. Sci. 2014, 88, 66–75.

[66]

Rangaraju, R. R.; Raja, K. S.; Panday, A.; Misra, M. An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron. Electrochim. Acta 2010, 55, 785–793.

[67]

Wei, W.; Lee, K.; Shaw, S.; Schmuki, P. Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. Chem. Comm. 2012, 48, 4244–4246.

[68]

Wang, C. K.; Lin, C. K.; Wu, C. L.; Wang, S. C.; Huang, J. L. Synthesis and characterization of electrochromic plate-like tungsten oxide films by acidic treatment of electrochemical anodized tungsten. Electrochim. Acta 2013, 112, 24–31.

[69]

He, S. H.; Zheng, M. J.; Yao, L. J.; Yuan, X. L.; Li, M.; Ma, L.; Shen, W. Z. Preparation and properties of ZnO nanostructures by electrochemical anodization method. Appl. Surf. Sci. 2010, 256, 2557–2562.

[70]

Chopra, D.; Jayasree, A.; Guo, T. Q.; Gulati, K.; Ivanovski, S. Advancing dental implants: Bioactive and therapeutic modifications of zirconia. Bioact. Mater. 2022, 13, 161–178.

[71]

Petrenyov, I. A.; Kamalov, R. V.; Vokhmintsev, A. S.; Martemyanov, N. A.; Weinstein, I. A. Nanostructural features of anodic zirconia synthesized using different temperature modes. J. Phys. Conf. Ser. 2018, 1124, 022004.

[72]

Rozana, M.; Lockman, Z. Formation of anodic ZrO2 nanostructures in NH4F/ethylene glycol electrolyte. IOP Conf. Ser. Earth Environ. Sci. 2020, 483, 012047.

Nano Research
Pages 1320-1329
Cite this article:
Chopra D, Guo T, Ivanovski S, et al. Single-step nano-engineering of multiple micro-rough metals via anodization. Nano Research, 2023, 16(1): 1320-1329. https://doi.org/10.1007/s12274-022-4847-8
Topics:

2964

Views

14

Crossref

15

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 26 May 2022
Revised: 24 July 2022
Accepted: 01 August 2022
Published: 21 September 2022
© Tsinghua University Press 2022
Return