AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The sulfolane-based liquid electrolyte with LiClO4 additive for the wide-temperature operating high nickel ternary cathode

Yixin Zhu1Shuang He1Jiayi Ding1Guangyu Zhao2Fang Lian1( )
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
University of New South Wales, Pontypridd, CF37 1DL, UK
Show Author Information

Graphical Abstract

The introduction of LiClO4 additive further strengthens the Li+–TFSI− interaction in the solvation sheath structure and fundamentally regulates the interfacial reaction. Therefore, the sulfolane-based electrolyte has been achieved with high-voltage stability over wide operating temperature between −60 and 55 °C for the high nickel tannery cathode.

Abstract

An adequate wide temperature electrolyte for high nickel ternary cathode is urgent to further develop high energy density batteries. Herein, a comprehensive double-salt local high-concentration sulfolane-based electrolyte (DLi) is proposed with specific sheath structure to build stable interface on the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode at wide operating temperature between −60 and 55 °C. Lithium perchlorate (LiClO4) in combination with high concentration lithium bis-(trifluoromethanesulfonyl) imide (LiTFSI) strengthens the internal interaction between anion and cation in the solvation structure, increasing Li+ transference number of the electrolyte to 0.61. Moreover, the structure and component characteristics of the passive interface layer on NCM811 are modulated, decreasing desolvation energy of Li+ ions, benefiting Li+ transport dynamics especially at low temperature, and also ensuring the interfacial stability at a wide operating temperature range. As a result, the cathode with DLi exhibits excellent high-temperature storage performance and high capacity retention of 80.5% in 100 cycles at 55 °C. Meanwhile, the Li||NCM811 cells can deliver high discharge capacity of 160.1, 136.1, and 110.3 mAh·g−1 under current density of 0.1 C at −20, −40, and −60 °C, maintaining 84.5%, 71.8%, and 58.2% of the discharge capacity at 30 °C, respectively. Moreover, it enables NCM811 cathode to achieve a reversible capacity of 142.8 mAh·g−1 in 200 cycles at −20 °C and 0.2 C. Our studies shed light on the molecular strategy of wide operational temperature electrolyte for high nickel ternary cathode.

Electronic Supplementary Material

Download File(s)
12274_2022_4852_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, e1800561.

[2]

Gao, B.; Li, X. X.; Ding, K.; Huang, C.; Li, Q. W.; Chu, P. K.; Huo, K. F. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. J. Mater. Chem. A 2019, 7, 14–37.

[3]

Choi, E.; Chang, S. A temperature-dependent state of charge estimation method including hysteresis for lithium-ion batteries in hybrid electric vehicles. IEEE Access 2020, 8, 129857–129868.

[4]

Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 2018, 8, 1702028.

[5]

Nayak, P. K.; Erickson, E. M.; Schipper, F.; Penki, T. R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B.; Aurbach, D. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2018, 8, 1702397.

[6]

Shi, J. L.; Xiao, D. D.; Ge, M. Y.; Yu, X. Q.; Chu, Y.; Huang, X. J.; Zhang, X. D.; Yin, Y. X.; Yang, X. Q.; Guo, Y. G. et al. High-capacity cathode material with high voltage for Li-ion batteries. Adv. Mater. 2018, 30, 1705575.

[7]

He, M. N.; Su, C. C.; Feng, Z. X.; Zeng, L.; Wu, T. P.; Bedzyk, M. J.; Fenter, P.; Wang, Y.; Zhang, Z. C. High voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled at 4.6 V with a FEC/HFDEC-based electrolyte. Adv. Energy Mater. 2017, 7, 1700109.

[8]

Yan, P. F.; Zheng, J. M.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.

[9]

Strehle, B.; Friedrich, F.; Gasteiger, H. A. A comparative study of structural changes during long-term cycling of NCM-811 at ambient and elevated temperatures. J. Electrochem. Soc. 2021, 168, 050512.

[10]

Cabana, J.; Kwon, B. J.; Hu, L. H. Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Li-ion batteries. Acc. Chem. Res. 2018, 51, 299–308.

[11]

Tatara, R.; Karayaylali, P.; Yu, Y.; Zhang, Y. R.; Giordano, L.; Maglia, F.; Jung, R.; Schmidt, J. P.; Lund, I.; Shao-Horn, Y. The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. J. Electrochem. Soc. 2019, 166, A5090–A5098.

[12]

Han, X. B.; Lu, L. G.; Zheng, Y. J.; Feng, X. N.; Li, Z.; Li, J. Q.; Ouyang, M. G. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005.

[13]

Fan, X. L.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J. J.; Xu, K. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4, 174–185.

[14]

Logan, E. R.; Tonita, E. M.; Gering, K. L.; Ma, L.; Bauer, M. K. G.; Li, J.; Beaulieu, L. Y.; Dahn, J. R. A study of the transport properties of ethylene carbonate-free Li electrolytes. J. Electrochem. Soc. 2018, 165, A705–A716.

[15]

Li, W. D.; Dolocan, A.; Li, J. Y.; Xie, Q.; Manthiram, A. Ethylene carbonate-free electrolytes for high-nickel layered oxide cathodes in lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1901152.

[16]

Tornheim, A.; Sharifi-Asl, S.; Garcia, J. C.; Bareño, J.; Iddir, H.; Shahbazian-Yassar, R.; Zhang, Z. C. Effect of electrolyte composition on rock salt surface degradation in NMC cathodes during high-voltage potentiostatic holds. Nano Energy 2019, 55, 216–225.

[17]

Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 715–722.

[18]

Sahore, R.; O’Hanlon, D. C.; Tornheim, A.; Lee, C. W.; Garcia, J. C.; Iddir, H.; Balasubramanian, M.; Bloom, I. Revisiting the mechanism behind transition-metal dissolution from delithiated LiNixMnyCozO2 (NMC) cathodes. J. Electrochem. Soc. 2020, 167, 020513.

[19]

Zhang, Y. R.; Katayama, Y.; Tatara, R.; Giordano, L.; Yu, Y.; Fraggedakis, D.; Sun, J. G.; Maglia, F.; Jung, R.; Bazant, M. Z. et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ fourier transform infrared spectroscopy. Energy Environ. Sci. 2020, 13, 183–199.

[20]

Betz, J.; Brinkmann, J. P.; Nölle, R.; Lürenbaum, C.; Kolek, M.; Stan, M. C.; Winter, M.; Placke, T. Cross talk between transition metal cathode and Li metal anode: Unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 2019, 9, 1900574.

[21]

Li, W. S. Review—An unpredictable hazard in lithium-ion batteries from transition metal ions: Dissolution from cathodes, deposition on anodes and elimination strategies. J. Electrochem. Soc. 2020, 167, 090514.

[22]

Morin, H. R.; Graczyk, D. G.; Tsai, Y.; Lopykinski, S.; Iddir, H.; Garcia, J. C.; Dietz Rago, N.; Trask, S.; Flores, L.; Son, S. B. et al. Transition-metal dissolution from NMC-family oxides: A case study. ACS Appl. Energy Mater. 2020, 3, 2565–2575.

[23]

Chen, L.; Fan, X. L.; Hu, E. Y.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Li, J.; Su, D.; Yang, X. Q. et al. Achieving high energy density through increasing the output voltage: A highly reversible 5.3 V battery. Chem 2019, 5, 896–912.

[24]

Jung, C. H.; Shim, H.; Eum, D.; Hong, S. H. Challenges and recent progress in LiNixCoyMn1−xyO2 (NCM) cathodes for lithium ion batteries. J. Korean Ceramic Soc. 2020, 58, 1–27.

[25]

Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254.

[26]

Chang, Z.; Qiao, Y.; Yang, H. J.; Cao, X.; Zhu, X. Y.; He, P.; Zhou, H. S. Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem., Int. Ed. 2021, 60, 15572–15581.

[27]

Zhang, Q. Q.; Liu, K.; Li, C.; Li, L.; Liu, X.; Li, W.; Zhang, J. L. In situ induced surface reconstruction of single-crystal lithium-ion cathode toward effective interface compatibility. ACS Appl. Mater. Interfaces 2021, 13, 13771–13780.

[28]

Lv, W. X.; Zhu, C. J.; Chen, J.; Ou, C. X.; Zhang, Q.; Zhong, S. W. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives. Chem. Eng. J. 2021, 418, 129400.

[29]

Hou, J. B.; Yang, M.; Wang, D. Y.; Zhang, J. L. Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Adv. Energy Mater. 2020, 10, 1904152.

[30]

Cho, Y. G.; Li, M. Q.; Holoubek, J.; Li, W. K.; Yin, Y. J.; Meng, Y. S.; Chen, Z. Enabling the low-temperature cycling of NMC||graphite pouch cells with an ester-based electrolyte. ACS Energy Lett. 2021, 6, 2016–2023.

[31]

Holoubek, J.; Yu, M. Y.; Yu, S. C.; Li, M. Q.; Wu, Z. H.; Xia, D. W.; Bhaladhare, P.; Gonzalez, M. S.; Pascal, T. A.; Liu, P. et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 2020, 5, 1438–1447.

[32]

Shangguan, X. H.; Xu, G. J.; Cui, Z. L.; Wang, Q. L.; Du, X. F.; Chen, K.; Huang, S. Q.; Jia, G. F.; Li, F. Q.; Wang, X. et al. Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries. Small 2019, 15, e1900269.

[33]

Dong, X. L.; Yang, Y.; Wang, B. L.; Cao, Y. J.; Wang, N.; Li, P. L.; Wang, Y. G.; Xia, Y. Y. Low-temperature charge/discharge of rechargeable battery realized by intercalation pseudocapacitive behavior. Adv. Sci. (Weinh. ) 2020, 7, 2000196.

[34]

Dong, X. L.; Wang, Y. G.; Xia, Y. Y. Promoting rechargeable batteries operated at low temperature. Acc. Chem. Res. 2021, 54, 3883–3894.

[35]

Zhang, N.; Deng, T.; Zhang, S. Q.; Wang, C. H.; Chen, L. X.; Wang, C. S.; Fan, X. L. Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 2022, 34, e2107899.

[36]

Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Adv. Sci. 2018, 4, eaas9820.

[37]

Wang, Q. S.; Jiang, L. H.; Yu, Y.; Sun, J. H. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93–114.

[38]

Xu, J. C.; Pang, S.; Wang, X. Y.; Wang, P.; Ji, Y. L. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures. Joule 2021, 5, 2437–2449.

[39]

Dong, X. L.; Guo, Z. W.; Guo, Z. Y.; Wang, Y. G.; Xia, Y. Y. Organic batteries operated at −70 °C. Joule 2018, 2, 902–913.

[40]

Sun, Z. H.; Li, Z.; Gao, L. F.; Zhao, X.; Han, D. X.; Gan, S. Y.; Guo, S. J.; Niu, L. Grafting benzenediazonium tetrafluoroborate onto LiNixCoyMnzO2 materials achieves subzero-temperature high-capacity lithium-ion storage via a diazonium soft-chemistry method. Adv. Energy Mater. 2019, 9, 1802946.

[41]

Li, Q.; Liu, G.; Cheng, H. R.; Sun, Q. J.; Zhang, J. L.; Ming, J. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges. Chem.—Eur. J. 2021, 27, 15842–15865.

[42]

Cai, H.; Jing, H. R.; Zhang, X. L.; Shen, M.; Wang, Q. Improving high-voltage performance of lithium-ion batteries with sulfolane as an electrolyte additive. J. Electrochem. Soc. 2017, 164, A714–A720.

[43]

Alvarado, J.; Schroeder, M. A.; Zhang, M. H.; Borodin, O.; Gobrogge, E.; Olguin, M.; Ding, M. S.; Gobet, M.; Greenbaum, S.; Meng, Y. S. et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 2018, 21, 341–353.

[44]

Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.

[45]

Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.

[46]

Fu, J. L.; Ji, X.; Chen, J.; Chen, L.; Fan, X. L.; Mu, D. B.; Wang, C. S. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew, Chem., Int. Ed. 2020, 59, 22194–22201.

[47]

Piao, N.; Ji, X.; Xu, H.; Fan, X. L.; Chen, L.; Liu, S. F.; Garaga, M. N.; Greenbaum, S. G.; Wang, L.; Wang, C. S. et al. Countersolvent electrolytes for lithium-metal batteries. Adv. Energy Mater. 2020, 10, 1903568.

[48]

Okoshi, M.; Chou, C. P.; Nakai, H. Theoretical analysis of carrier ion diffusion in superconcentrated electrolyte solutions for sodium-ion batteries. J. Phys. Chem. B 2018, 122, 2600–2609.

[49]

Herstedt, M.; Smirnov, M.; Johansson, P.; Chami, M.; Grondin, J.; Servant, L.; Lassègues, J. C. Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI). J. Raman Spectrosc. 2005, 36, 762–770.

[50]

Katon, J. E.; Feairheller, W. R. The vibrational spectra and molecular configuration of sulfolane. Spectrochim. Acta 1965, 21, 199–201.

[51]

Dahmouche, K.; Atik, M.; Mello, N.; Bonagamba, T. J.; Panepucci, H.; Aegerter, M. A.; Judeinstein, P. Investigation of new ion-conducting ormolytes: Structure and properties. J. Sol-Gel Sci. Technol. 1997, 8, 711–715.

Nano Research
Pages 3855-3863
Cite this article:
Zhu Y, He S, Ding J, et al. The sulfolane-based liquid electrolyte with LiClO4 additive for the wide-temperature operating high nickel ternary cathode. Nano Research, 2023, 16(3): 3855-3863. https://doi.org/10.1007/s12274-022-4852-y
Topics:
Part of a topical collection:

1435

Views

16

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 04 June 2022
Revised: 20 July 2022
Accepted: 01 August 2022
Published: 12 September 2022
© Tsinghua University Press 2022
Return