Graphical Abstract

An adequate wide temperature electrolyte for high nickel ternary cathode is urgent to further develop high energy density batteries. Herein, a comprehensive double-salt local high-concentration sulfolane-based electrolyte (DLi) is proposed with specific sheath structure to build stable interface on the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode at wide operating temperature between −60 and 55 °C. Lithium perchlorate (LiClO4) in combination with high concentration lithium bis-(trifluoromethanesulfonyl) imide (LiTFSI) strengthens the internal interaction between anion and cation in the solvation structure, increasing Li+ transference number of the electrolyte to 0.61. Moreover, the structure and component characteristics of the passive interface layer on NCM811 are modulated, decreasing desolvation energy of Li+ ions, benefiting Li+ transport dynamics especially at low temperature, and also ensuring the interfacial stability at a wide operating temperature range. As a result, the cathode with DLi exhibits excellent high-temperature storage performance and high capacity retention of 80.5% in 100 cycles at 55 °C. Meanwhile, the Li||NCM811 cells can deliver high discharge capacity of 160.1, 136.1, and 110.3 mAh·g−1 under current density of 0.1 C at −20, −40, and −60 °C, maintaining 84.5%, 71.8%, and 58.2% of the discharge capacity at 30 °C, respectively. Moreover, it enables NCM811 cathode to achieve a reversible capacity of 142.8 mAh·g−1 in 200 cycles at −20 °C and 0.2 C. Our studies shed light on the molecular strategy of wide operational temperature electrolyte for high nickel ternary cathode.
Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, e1800561.
Gao, B.; Li, X. X.; Ding, K.; Huang, C.; Li, Q. W.; Chu, P. K.; Huo, K. F. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. J. Mater. Chem. A 2019, 7, 14–37.
Choi, E.; Chang, S. A temperature-dependent state of charge estimation method including hysteresis for lithium-ion batteries in hybrid electric vehicles. IEEE Access 2020, 8, 129857–129868.
Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 2018, 8, 1702028.
Nayak, P. K.; Erickson, E. M.; Schipper, F.; Penki, T. R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B.; Aurbach, D. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2018, 8, 1702397.
Shi, J. L.; Xiao, D. D.; Ge, M. Y.; Yu, X. Q.; Chu, Y.; Huang, X. J.; Zhang, X. D.; Yin, Y. X.; Yang, X. Q.; Guo, Y. G. et al. High-capacity cathode material with high voltage for Li-ion batteries. Adv. Mater. 2018, 30, 1705575.
He, M. N.; Su, C. C.; Feng, Z. X.; Zeng, L.; Wu, T. P.; Bedzyk, M. J.; Fenter, P.; Wang, Y.; Zhang, Z. C. High voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled at 4.6 V with a FEC/HFDEC-based electrolyte. Adv. Energy Mater. 2017, 7, 1700109.
Yan, P. F.; Zheng, J. M.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.
Strehle, B.; Friedrich, F.; Gasteiger, H. A. A comparative study of structural changes during long-term cycling of NCM-811 at ambient and elevated temperatures. J. Electrochem. Soc. 2021, 168, 050512.
Cabana, J.; Kwon, B. J.; Hu, L. H. Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Li-ion batteries. Acc. Chem. Res. 2018, 51, 299–308.
Tatara, R.; Karayaylali, P.; Yu, Y.; Zhang, Y. R.; Giordano, L.; Maglia, F.; Jung, R.; Schmidt, J. P.; Lund, I.; Shao-Horn, Y. The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. J. Electrochem. Soc. 2019, 166, A5090–A5098.
Han, X. B.; Lu, L. G.; Zheng, Y. J.; Feng, X. N.; Li, Z.; Li, J. Q.; Ouyang, M. G. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005.
Fan, X. L.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J. J.; Xu, K. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4, 174–185.
Logan, E. R.; Tonita, E. M.; Gering, K. L.; Ma, L.; Bauer, M. K. G.; Li, J.; Beaulieu, L. Y.; Dahn, J. R. A study of the transport properties of ethylene carbonate-free Li electrolytes. J. Electrochem. Soc. 2018, 165, A705–A716.
Li, W. D.; Dolocan, A.; Li, J. Y.; Xie, Q.; Manthiram, A. Ethylene carbonate-free electrolytes for high-nickel layered oxide cathodes in lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1901152.
Tornheim, A.; Sharifi-Asl, S.; Garcia, J. C.; Bareño, J.; Iddir, H.; Shahbazian-Yassar, R.; Zhang, Z. C. Effect of electrolyte composition on rock salt surface degradation in NMC cathodes during high-voltage potentiostatic holds. Nano Energy 2019, 55, 216–225.
Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 715–722.
Sahore, R.; O’Hanlon, D. C.; Tornheim, A.; Lee, C. W.; Garcia, J. C.; Iddir, H.; Balasubramanian, M.; Bloom, I. Revisiting the mechanism behind transition-metal dissolution from delithiated LiNixMnyCozO2 (NMC) cathodes. J. Electrochem. Soc. 2020, 167, 020513.
Zhang, Y. R.; Katayama, Y.; Tatara, R.; Giordano, L.; Yu, Y.; Fraggedakis, D.; Sun, J. G.; Maglia, F.; Jung, R.; Bazant, M. Z. et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ fourier transform infrared spectroscopy. Energy Environ. Sci. 2020, 13, 183–199.
Betz, J.; Brinkmann, J. P.; Nölle, R.; Lürenbaum, C.; Kolek, M.; Stan, M. C.; Winter, M.; Placke, T. Cross talk between transition metal cathode and Li metal anode: Unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 2019, 9, 1900574.
Li, W. S. Review—An unpredictable hazard in lithium-ion batteries from transition metal ions: Dissolution from cathodes, deposition on anodes and elimination strategies. J. Electrochem. Soc. 2020, 167, 090514.
Morin, H. R.; Graczyk, D. G.; Tsai, Y.; Lopykinski, S.; Iddir, H.; Garcia, J. C.; Dietz Rago, N.; Trask, S.; Flores, L.; Son, S. B. et al. Transition-metal dissolution from NMC-family oxides: A case study. ACS Appl. Energy Mater. 2020, 3, 2565–2575.
Chen, L.; Fan, X. L.; Hu, E. Y.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Li, J.; Su, D.; Yang, X. Q. et al. Achieving high energy density through increasing the output voltage: A highly reversible 5.3 V battery. Chem 2019, 5, 896–912.
Jung, C. H.; Shim, H.; Eum, D.; Hong, S. H. Challenges and recent progress in LiNixCoyMn1−x−yO2 (NCM) cathodes for lithium ion batteries. J. Korean Ceramic Soc. 2020, 58, 1–27.
Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 2020, 24, 247–254.
Chang, Z.; Qiao, Y.; Yang, H. J.; Cao, X.; Zhu, X. Y.; He, P.; Zhou, H. S. Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem., Int. Ed. 2021, 60, 15572–15581.
Zhang, Q. Q.; Liu, K.; Li, C.; Li, L.; Liu, X.; Li, W.; Zhang, J. L. In situ induced surface reconstruction of single-crystal lithium-ion cathode toward effective interface compatibility. ACS Appl. Mater. Interfaces 2021, 13, 13771–13780.
Lv, W. X.; Zhu, C. J.; Chen, J.; Ou, C. X.; Zhang, Q.; Zhong, S. W. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives. Chem. Eng. J. 2021, 418, 129400.
Hou, J. B.; Yang, M.; Wang, D. Y.; Zhang, J. L. Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Adv. Energy Mater. 2020, 10, 1904152.
Cho, Y. G.; Li, M. Q.; Holoubek, J.; Li, W. K.; Yin, Y. J.; Meng, Y. S.; Chen, Z. Enabling the low-temperature cycling of NMC||graphite pouch cells with an ester-based electrolyte. ACS Energy Lett. 2021, 6, 2016–2023.
Holoubek, J.; Yu, M. Y.; Yu, S. C.; Li, M. Q.; Wu, Z. H.; Xia, D. W.; Bhaladhare, P.; Gonzalez, M. S.; Pascal, T. A.; Liu, P. et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 2020, 5, 1438–1447.
Shangguan, X. H.; Xu, G. J.; Cui, Z. L.; Wang, Q. L.; Du, X. F.; Chen, K.; Huang, S. Q.; Jia, G. F.; Li, F. Q.; Wang, X. et al. Additive-assisted novel dual-salt electrolyte addresses wide temperature operation of lithium-metal batteries. Small 2019, 15, e1900269.
Dong, X. L.; Yang, Y.; Wang, B. L.; Cao, Y. J.; Wang, N.; Li, P. L.; Wang, Y. G.; Xia, Y. Y. Low-temperature charge/discharge of rechargeable battery realized by intercalation pseudocapacitive behavior. Adv. Sci. (Weinh. ) 2020, 7, 2000196.
Dong, X. L.; Wang, Y. G.; Xia, Y. Y. Promoting rechargeable batteries operated at low temperature. Acc. Chem. Res. 2021, 54, 3883–3894.
Zhang, N.; Deng, T.; Zhang, S. Q.; Wang, C. H.; Chen, L. X.; Wang, C. S.; Fan, X. L. Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 2022, 34, e2107899.
Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Adv. Sci. 2018, 4, eaas9820.
Wang, Q. S.; Jiang, L. H.; Yu, Y.; Sun, J. H. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93–114.
Xu, J. C.; Pang, S.; Wang, X. Y.; Wang, P.; Ji, Y. L. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures. Joule 2021, 5, 2437–2449.
Dong, X. L.; Guo, Z. W.; Guo, Z. Y.; Wang, Y. G.; Xia, Y. Y. Organic batteries operated at −70 °C. Joule 2018, 2, 902–913.
Sun, Z. H.; Li, Z.; Gao, L. F.; Zhao, X.; Han, D. X.; Gan, S. Y.; Guo, S. J.; Niu, L. Grafting benzenediazonium tetrafluoroborate onto LiNixCoyMnzO2 materials achieves subzero-temperature high-capacity lithium-ion storage via a diazonium soft-chemistry method. Adv. Energy Mater. 2019, 9, 1802946.
Li, Q.; Liu, G.; Cheng, H. R.; Sun, Q. J.; Zhang, J. L.; Ming, J. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges. Chem.—Eur. J. 2021, 27, 15842–15865.
Cai, H.; Jing, H. R.; Zhang, X. L.; Shen, M.; Wang, Q. Improving high-voltage performance of lithium-ion batteries with sulfolane as an electrolyte additive. J. Electrochem. Soc. 2017, 164, A714–A720.
Alvarado, J.; Schroeder, M. A.; Zhang, M. H.; Borodin, O.; Gobrogge, E.; Olguin, M.; Ding, M. S.; Gobet, M.; Greenbaum, S.; Meng, Y. S. et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 2018, 21, 341–353.
Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.
Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.
Fu, J. L.; Ji, X.; Chen, J.; Chen, L.; Fan, X. L.; Mu, D. B.; Wang, C. S. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew, Chem., Int. Ed. 2020, 59, 22194–22201.
Piao, N.; Ji, X.; Xu, H.; Fan, X. L.; Chen, L.; Liu, S. F.; Garaga, M. N.; Greenbaum, S. G.; Wang, L.; Wang, C. S. et al. Countersolvent electrolytes for lithium-metal batteries. Adv. Energy Mater. 2020, 10, 1903568.
Okoshi, M.; Chou, C. P.; Nakai, H. Theoretical analysis of carrier ion diffusion in superconcentrated electrolyte solutions for sodium-ion batteries. J. Phys. Chem. B 2018, 122, 2600–2609.
Herstedt, M.; Smirnov, M.; Johansson, P.; Chami, M.; Grondin, J.; Servant, L.; Lassègues, J. C. Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI−). J. Raman Spectrosc. 2005, 36, 762–770.
Katon, J. E.; Feairheller, W. R. The vibrational spectra and molecular configuration of sulfolane. Spectrochim. Acta 1965, 21, 199–201.
Dahmouche, K.; Atik, M.; Mello, N.; Bonagamba, T. J.; Panepucci, H.; Aegerter, M. A.; Judeinstein, P. Investigation of new ion-conducting ormolytes: Structure and properties. J. Sol-Gel Sci. Technol. 1997, 8, 711–715.