AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A triple-enhanced chemodynamic approach based on glucose-powered hybrid nanoreactors for effective bacteria killing

Jintao Fu1Yixian Zhou1Ting Liu1Wenhao Wang1Yiting Zhao1Ying Sun1Yiming Zhang1Wenxuan Qin2Zhongwei Chen2Chao Lu2Guilan Quan2Chuanbin Wu2Xin Pan1 ( )
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
College of Pharmacy, Jinan University, Guangzhou 511443, China
Show Author Information

Graphical Abstract

A glucose-powered hybrid nanoreactor was proposed to achieve a robust bacteria killing based on a triple-enhanced chemodynamic approach.

Abstract

Rapid evolution of multidrug resistance in bacterial pathogens is outpacing the development of new antibiotics, and chemodynamic therapy (CDT) provides an excellent alternative. However, achieving highly efficient CDT is still a great challenge, since the pH in the infection site is close to neutral and the supply of H2O2 is inadequate. We herein constructed the antibacterial nanoreactors. Indocyanine green (ICG) and glucose oxidase (GOx) were incorporated into homologous zeolitic imidazolate framework-8 (ZIF-8) nanoparticles coating with metal polyphenol network (MPN) composed by Fe3+ and tannic acid (TA). The well-designed nanoreactors could simultaneously break the pH and H2O2 limitations, and generate hyperthermia under irradiation, thus realizing a triple-enhanced CDT for high-efficiency sterilization. Furthermore, the nanoreactors could combine CDT with photothermal therapy (PTT) and photodynamic therapy (PDT), which not only improved the bactericidal efficiency and broadened the antibacterial spectrum, but also alleviated the antibiotics resistance issues. Remarkably, the proposed nanoreactors achieved a robust in vitro bacterial killing against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Pseudomonas aeruginosa. The nanoreactors achieved an 99.7% MRSA reduction in an MRSA-induced murine abscess model accompanied with negligible toxicity. Overall, this study provides a promising strategy for multiple-enhanced CDT and multimodal combined therapy for pathogenic infections.

Electronic Supplementary Material

Download File(s)
12274_2022_4854_MOESM1_ESM.pdf (705.5 KB)

References

[1]

Tian, X. H.; Wang, P. L.; Li, T.; Huang, X. M.; Guo, W. B.; Yang, Y. Q.; Yan, M. M.; Zhang, H.; Cai, D. S.; Jia, X. H. et al. Self-assembled natural phytochemicals for synergistically antibacterial application from the enlightenment of traditional Chinese medicine combination. Acta Pharm. Sin. B 2020, 10, 1784–1795.

[2]

Han, H. C.; Yang, J. J.; Li, X. Y.; Qi, Y.; Yang, Z. Y.; Han, Z. J.; Jiang, Y. Y.; Stenzel, M.; Li, H.; Yin, Y. X. et al. Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents. Nano Res. 2021, 14, 2512–2534.

[3]

Li, Y. M.; Hu, X. L.; Tian, S. D.; Li, Y.; Zhang, G. Q.; Zhang, G. Y.; Liu, S. Y. Polyion complex micellar nanoparticles for integrated fluorometric detection and bacteria inhibition in aqueous media. Biomaterials 2014, 35, 1618–1626.

[4]

Hübner, I.; Shapiro, J. A.; Hoßmann, J.; Drechsel, J.; Hacker, S. M.; Rather, P. N.; Pieper, D. H.; Wuest, W. M.; Sieber, S. A. Broad spectrum antibiotic xanthocillin X effectively kills Acinetobacter baumannii via dysregulation of heme biosynthesis. ACS Cent. Sci. 2021, 7, 488–498.

[5]

Yang, M.; Zhang, J.; Wei, Y. H.; Zhang, J.; Tao, C. M. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. Nano Res. 2022, 15, 6220–6242.

[6]

Wang, C. Y.; Zhao, W.; Cao, B.; Wang, Z. X.; Zhou, Q.; Lu, S. Y.; Lu, L. G.; Zhan, M. X.; Hu, X. L. Biofilm-responsive polymeric nanoparticles with self-adaptive deep penetration for in vivo photothermal treatment of implant infection. Chem. Mater. 2020, 32, 7725–7738.

[7]

Zheng, Y. W.; Yan, Y. L.; Lin, L. M.; He, Q.; Hu, H. H.; Luo, R.; Xian, D. Y.; Wu, J. Y.; Shi, Y.; Zeng, F. P. et al. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomater. 2022, 142, 113–123.

[8]

Qi, X. L.; Huang, Y. J.; You, S. Y.; Xiang, Y. J.; Cai, E. Y.; Mao, R. T.; Pan, W. H.; Tong, X. Q.; Dong, W.; Ye, F. F. et al. Engineering robust Ag-decorated polydopamine nano-photothermal platforms to combat bacterial infection and prompt wound healing. Adv. Sci. 2022, 9, 2106015.

[9]

Hou, X.; Zeng, H.; Chi, X.; Hu, X. G. Pathogen receptor membrane-coating facet structures boost nanomaterial immune escape and antibacterial performance. Nano Lett. 2021, 21, 9966–9975.

[10]

Wu, Y. Z.; Liao, Q.; Wu, L.; Luo, Y. X.; Zhang, W.; Guan, M.; Pan, H. B.; Tong, L. P.; Chu, P. K.; Wang, H. Y. ZnL2-BPs integrated bone scaffold under sequential photothermal mediation: A win-win strategy delivering antibacterial therapy and fostering osteogenesis thereafter. ACS Nano 2021, 15, 17854–17869.

[11]

Guo, X. J.; Cao, B.; Wang, C. Y.; Lu, S. Y.; Hu, X. L. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. Nanoscale 2020, 12, 7651–7659.

[12]

Li, J.; Song, S.; Meng, J. S.; Tan, L.; Liu, X. M.; Zheng, Y. F.; Li, Z. Y.; Yeung, K. W. K.; Cui, Z. D.; Liang, Y. Q. et al. 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 2021, 143, 15427–15439.

[13]

Liu, J. H.; Li, R. S.; He, M. T.; Xu, Z. G.; Xu, L. Q.; Kang, Y. J.; Xue, P. Multifunctional SGQDs-CORM@HA nanosheets for bacterial eradication through cascade-activated “nanoknife” effect and photodynamic/CO gas therapy. Biomaterials 2021, 277, 121084.

[14]

Li, Z.; Lu, S.; Liu, W. Z.; Dai, T.; Ke, J. X.; Li, X. J.; Li, R. F.; Zhang, Y. X.; Chen, Z.; Chen, X. Y. Synergistic lysozyme-photodynamic therapy against resistant bacteria based on an intelligent upconversion nanoplatform. Angew. Chem., Int. Ed. 2021, 60, 19201–19206.

[15]

Judzewitsch, P. R.; Corrigan, N.; Wong, E. H. H.; Boyer, C. Photo-enhanced antimicrobial activity of polymers containing an embedded photosensitiser. Angew. Chem., Int. Ed. 2021, 60, 24248–24256.

[16]

Liu, Z. W.; Zhao, X. Y.; Yu, B. R.; Zhao, N. N.; Zhang, C.; Xu, F. J. Rough carbon-iron oxide nanohybrids for near-infrared-II light-responsive synergistic antibacterial therapy. ACS Nano 2021, 15, 7482–7490.

[17]

Lin, X. D.; Fang, Y.; Hao, Z.; Wu, H. T.; Zhao, M. Y.; Wang, S.; Liu, Y. Q. Bacteria-triggered multifunctional hydrogel for localized chemodynamic and low-temperature photothermal sterilization. Small 2021, 17, 2103303.

[18]

Jia, C. Y.; Guo, Y. X.; Wu, F. G. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: Strategies and recent advances. Small 2022, 18, 2103868.

[19]

Chen, L. F.; Xing, S. H.; Lei, Y. L.; Chen, Q. S.; Zou, Z.; Quan, K.; Qing, Z. H.; Liu, J. W.; Yang, R. H. A glucose-powered activatable nanozyme breaking PH and H2O2 limitations for treating diabetic infections. Angew. Chem., Int. Ed. 2021, 60, 23534–23539.

[20]

Pang, X.; Li, D. F.; Zhu, J.; Cheng, J. L.; Liu, G. Beyond antibiotics: Photo/sonodynamic approaches for bacterial theranostics. Nano-Micro Lett. 2020, 12, 144.

[21]

Bi, X. L.; Bai, Q.; Wang, L. N.; Du, F. L.; Liu, M. H.; Yu, W. W.; Li, S. H.; Li, J. Q.; Zhu, Z. L.; Sui, N. et al. Boron doped graphdiyne: A metal-free peroxidase mimetic nanozyme for antibacterial application. Nano Res. 2022, 15, 1446–1454.

[22]

Song, X. J.; Xu, J.; Liang, C.; Chao, Y.; Jin, Q. T.; Wang, C.; Chen, M. W.; Liu, Z. Self-supplied tumor oxygenation through separated liposomal delivery of H2O2 and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 2018, 18, 6360–6368.

[23]

He, Y. L.; Guo, S. W.; Zhang, Y.; Liu, Y.; Ju, H. X. NIR-II reinforced intracellular cyclic reaction to enhance chemodynamic therapy with abundant H2O2 supply. Biomaterials 2021, 275, 120962.

[24]

Li, T.; Qiu, H. Q.; Liu, N.; Li, J. W.; Bao, Y. H.; Tong, W. J. Construction of self-activated cascade metal-organic framework/enzyme hybrid nanoreactors as antibacterial agents. Colloids Surf. B: Biointerfaces 2020, 191, 111001.

[25]

Deng, L. M.; Liu, M. Z.; Sheng, D. L.; Luo, Y. L.; Wang, D.; Yu, X.; Wang, Z. G.; Ran, H. T.; Li, P. Low-intensity focused ultrasound-augmented Cascade chemodynamic therapy via boosting ROS generation. Biomaterials 2021, 271, 120710.

[26]

Hu, P.; Wu, T.; Fan, W. P.; Chen, L.; Liu, Y. Y.; Ni, D. L.; Bu, W. B.; Shi, J. L. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials 2017, 141, 86–95.

[27]

Liu, X. H.; Liu, Y.; Wang, J. N.; Wei, T. X.; Dai, Z. H. Mild hyperthermia-enhanced enzyme-mediated tumor cell chemodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 23065–23071.

[28]

Feng, L. L.; Gai, S. L.; He, F.; Yang, P. P.; Zhao, Y. L. Multifunctional bismuth ferrite nanocatalysts with optical and magnetic functions for ultrasound-enhanced tumor theranostics. ACS Nano 2020, 14, 7245–7258.

[29]

Zhao, P. R.; Jiang, Y. Q.; Tang, Z. M.; Li, Y. L.; Sun, B. X.; Wu, Y. L.; Wu, J. Y.; Liu, Y. Y.; Bu, W. B. Constructing electron levers in perovskite nanocrystals to regulate the local electron density for intensive chemodynamic therapy. Angew. Chem. 2021, 133, 8987–8994.

[30]

Zhang, H. L.; Li, J. J.; Chen, Y.; Wu, J. Y.; Wang, K.; Chen, L. J.; Wang, Y.; Jiang, X. W.; Liu, Y. Y.; Wu, Y. L. et al. Magneto-electrically enhanced intracellular catalysis of FePt-FeC heterostructures for chemodynamic therapy. Adv. Mater. 2021, 33, 2100472.

[31]

Gao, F.; Li, X. L.; Zhang, T. B.; Ghosal, A.; Zhang, G. F.; Fan, H. M.; Zhao, L. Y. Iron nanoparticles augmented chemodynamic effect by alternative magnetic field for wound disinfection and healing. J. Control. Release 2020, 324, 598–609.

[32]

Ruan, J.; Liu, H.; Chen, B. J.; Wang, F.; Wang, W. N.; Zha, Z. B.; Qian, H. S.; Miao, Z. H.; Sun, J. N.; Tian, T. et al. Interfacially engineered ZnxMn1−xS@polydopamine hollow nanospheres for glutathione depleting photothermally enhanced chemodynamic therapy. ACS Nano 2021, 15, 11428–11440.

[33]

Wu, F.; Zhang, Q. C.; Zhang, M.; Sun, B. H.; She, Z. C.; Ge, M. Q.; Lu, T. Y.; Chu, X. H.; Wang, Y.; Wang, J. X. et al. Hollow porous carbon coated FeS2-based nanocatalysts for multimodal imaging-guided photothermal, starvation, and triple-enhanced chemodynamic therapy of cancer. ACS Appl. Mater. Interfaces 2020, 12, 10142–10155.

[34]

Zhang, S. T.; Jin, L. H.; Liu, J. H.; Liu, Y.; Zhang, T. Q.; Zhao, Y.; Yin, N.; Niu, R.; Li, X. Q.; Xue, D. Z. et al. Boosting chemodynamic therapy by the synergistic effect of Co-catalyze and photothermal effect triggered by the second near-infrared light. Nano-Micro Lett. 2020, 12, 180.

[35]

Zhou, Y. X.; Niu, B. Y.; Zhao, Y. T.; Fu, J. T.; Wen, T.; Liao, K. X.; Quan, G. L.; Pan, X.; Wu, C. B. Multifunctional nanoreactors-integrated microneedles for cascade reaction-enhanced cancer therapy. J. Control. Release 2021, 339, 335–349.

[36]

Zhao, Y. T.; Zhou, Y. X.; Yang, D.; Gao, X. Y.; Wen, T.; Fu, J. T.; Wen, X. G.; Quan, G. L.; Pan, X.; Wu, C. B. Intelligent and spatiotemporal drug release based on multifunctional nanoparticle-integrated dissolving microneedle system for synergetic chemo-photothermal therapy to eradicate melanoma. Acta Biomater. 2021, 135, 164–178.

[37]

Bai, J.; Peng, C. J.; Guo, L. P.; Zhou, M. Metal-organic framework-integrated enzymes as bioreactor for enhanced therapy against solid tumor via a cascade catalytic reaction. ACS Biomater. Sci. Eng. 2019, 5, 6207–6215.

[38]

Fu, J. T.; Liu, T.; Feng, X. Q.; Zhou, Y. X.; Chen, M. L.; Wang, W. H.; Zhao, Y. T.; Lu, C.; Quan, G. L.; Cai, J. F. et al. A perfect pair: Stabilized black phosphorous nanosheets engineering with antimicrobial peptides for robust multidrug resistant bacteria eradication. Adv. Healthc. Mater. 2022, 11, 2101846.

[39]

Shao, F. Y.; Wu, Y. F.; Tian, Z. Y.; Liu, S. Q. Biomimetic nanoreactor for targeted cancer starvation therapy and cascade amplificated chemotherapy. Biomaterials 2021, 274, 120869.

[40]

Zhou, J.; Geng, S. Z.; Wang, Q. L.; Yin, Q. W.; Lou, R.; Wei, L. L.; Wu, Y. C.; Du, B.; Yao, H. C. Ovalbumin-modified nanoparticles increase the tumor accumulation by a tumor microenvironment-mediated “giant”. J. Mater. Chem. B 2020, 8, 7528–7538.

[41]

Yin, Z. C.; Lin, M. J.; Xu, Y.; Wang, Z. Y.; Cai, Y. R.; Yang, X. G. Enzyme and Au nanoparticles encapsulated ZIF-8 for glucose responsive closed-loop drug delivery. Mater. Lett. 2021, 301, 130276.

[42]

Tang, S.; Chi, K.; Yong, Q.; Catchmark, J. M. Synthesis of cationic bacterial cellulose using a templated metal phenolic network for antibacterial applications. Cellulose 2021, 28, 9283–9296.

[43]

Potter, M.; Najer, A.; Klöckner, A.; Zhang, S. D.; Holme, M. N.; Nele, V.; Che, J. Y.; Massi, L.; Penders, J.; Saunders, C. et al. Controlled dendrimersome nanoreactor system for localized hypochlorite-induced killing of bacteria. ACS Nano 2020, 14, 17333–17353.

[44]

Shi, Y.; Feng, X. Q.; Lin, L. M.; Wang, J.; Chi, J. Y.; Wu, B. Y.; Zhou, G. L.; Yu, F. Y.; Xu, Q.; Liu, D. J. et al. Virus-inspired surface-nanoengineered antimicrobial liposome: A potential system to simultaneously achieve high activity and selectivity. Bioact. Mater. 2021, 6, 3207–3217.

[45]

Shen, Z. Q.; Zheng, S. Q.; Xiao, S. Y.; Shen, R.; Liu, S. Y.; Hu, J. M. Red-light-mediated photoredox catalysis enables self-reporting nitric oxide release for efficient antibacterial treatment. Angew. Chem., Int. Ed. 2021, 60, 20452–20460.

[46]

Wu, B. Y.; Fu, J. T.; Zhou, Y. X.; Luo, S. L.; Zhao, Y. T.; Quan, G. L.; Pan, X.; Wu, C. B. Tailored core–shell dual metal-organic frameworks as a versatile nanomotor for effective synergistic antitumor therapy. Acta Pharm. Sin. B 2020, 10, 2198–2211.

[47]

Liu, J. J.; Jin, Y. J.; Song, Z.; Xu, L. H.; Yang, Y.; Zhao, X.; Wang, B. H.; Liu, W.; Zhang, K. X.; Zhang, Z. Z. et al. Boosting tumor treatment by dredging the hurdles of chemodynamic therapy synergistic ion therapy. Chem. Eng. J. 2021, 411, 128440.

[48]

Blackman, L. D.; Oo, Z. Y.; Qu, Y.; Gunatillake, P. A.; Cass, P.; Locock, K. E. S. Antimicrobial honey-inspired glucose-responsive nanoreactors by polymerization-induced self-assembly. ACS Appl. Mater. Interfaces 2020, 12, 11353–11362.

Nano Research
Pages 2682-2694
Cite this article:
Fu J, Zhou Y, Liu T, et al. A triple-enhanced chemodynamic approach based on glucose-powered hybrid nanoreactors for effective bacteria killing. Nano Research, 2023, 16(2): 2682-2694. https://doi.org/10.1007/s12274-022-4854-9
Topics:

1137

Views

23

Crossref

22

Web of Science

23

Scopus

1

CSCD

Altmetrics

Received: 13 June 2022
Revised: 30 July 2022
Accepted: 01 August 2022
Published: 02 September 2022
© Tsinghua University Press 2022
Return