AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electron modulation by atomic Ir site decoration in porous Co/N co-doped carbon for electrocatalytic hydrogen evolution

Youkui Zhang1,2( )Zitong Yan1Yeli Gao1Yaqin Fu1Wenhao Li1Yunxiang Lin3Chuanqiang Wu3Yujuan Pu4Tao Duan1Li Song2( )
State Key Laboratory of Environment-Friendly Energy Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
National Synchrotron Radiation Laboratory, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, China
Institute of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Devices, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
Show Author Information

Graphical Abstract

A novel hybrid nanostructure with iridium (Ir) and cobalt (Co) atomic-pair configuration anchored in porous nitrogen-doped carbon (pNC) nanosheet (denoted as IrCo-pNC) is constructed for electrocatalytic hydrogen evolution reaction (HER). The interaction between Ir and Co atoms in pNC causes the locally asymmetric electron distribution, thus contributing to significantly improved HER performance.

Abstract

The rational design of materials at atomic scale as efficient and stable electrocatalysts for hydrogen evolution reaction (HER) is critical for energy conversion. Herein, we report a novel hybrid nanostructure with iridium (Ir) and cobalt (Co) atomic pair configuration anchored in porous nitrogen-doped carbon (pNC) nanosheets (denoted as IrCo-pNC) for electrocatalytic HER. Experimental investigations and theoretical calculations reveal that the interaction between Ir and Co species in pNC promotes electron accumulation and depletion around isolated Ir and Co atoms, respectively, resulting in a local asymmetry electron density distribution. Density functional theory calculations also suggest that the electrons transfer from Co to adjacent Ir atom causing the down shift of the d-band center of Ir 5d in IrCo-pNC catalyst, thus optimizing the adsorption of hydrogen on Ir sites. The as-prepared IrCo-pNC exhibits significant HER performance with an overpotential of 21 mV to achieve a current density of 10 mA·cm−2 in 0.5 M H2SO4. This work provides insight into the role of asymmetry electron density distribution in nanomaterials in regulating HER electrocatalysis.

Electronic Supplementary Material

Download File(s)
12274_2022_4855_MOESM1_ESM.pdf (4.8 MB)
12274_2022_4855_MOESM2_ESM.pdf (663.2 KB)

References

[1]

Jacobson, M. Z.; Colella, W. G.; Golden, D. M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 2005, 308, 1901–1905.

[2]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[3]

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

[4]

Li, J. Y.; Hu, J.; Zhang, M. K.; Gou, W. Y.; Zhang, S.; Chen, Z.; Qu, Y. Q.; Ma, Y. Y. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3502.

[5]

Wang, J. S.; Zhang, Z. F.; Song, H. R.; Zhang, B.; Liu, J.; Shai, X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2008578.

[6]

Wang, J. S.; Xin, S. S.; Xiao, Y.; Zhang, Z. F.; Li, Z. M.; Zhang, W.; Li, C. J.; Bao, R.; Peng, J.; Yi, J. H. et al. Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202202518.

[7]

Wan, X. K.; Wu, H. B.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 2020, 32, 1901349.

[8]

Dang, N. K.; Umer, M.; Thangavel, P.; Sultan, S.; Tiwari, J. N.; Lee, J. H.; Kim, M. G.; Kim, K. S. Surface enrichment of iridium on IrCo alloys for boosting hydrogen production. J. Mater. Chem. A 2021, 9, 16898–16905.

[9]

Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

[10]

Rong, C. L.; Shen, X. J.; Wang, Y.; Thomsen, L.; Zhao, T. W.; Li, Y. B.; Lu, X. Y.; Amal, R.; Zhao, C. Electronic structure engineering of single-atom Ru sites via Co-N4 sites for bifunctional pH-universal water splitting. Adv. Mater. 2022, 34, 2110103.

[11]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[12]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[13]

Shi, H.; Dai, T. Y.; Wan, W. B.; Wen, Z.; Lang, X. Y.; Jiang, Q. Mo-/Co-N-C hybrid nanosheets oriented on hierarchical nanoporous Cu as versatile electrocatalysts for efficient water splitting. Adv. Funct. Mater. 2021, 31, 2102285.

[14]

Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

[15]

Liu, Z.; Zeng, L. L.; Yu, J. Y.; Yang, L. J.; Zhang, J.; Zhang, X. L.; Han, F.; Zhao, L. L.; Li, X.; Liu, H. et al. Charge redistribution of Ru nanoclusters on Co3O4 porous nanowire via the oxygen regulation for enhanced hydrogen evolution reaction. Nano Energy 2021, 85, 105940.

[16]

Zhao, X.; Wang, F. L.; Kong, X. P.; Fang, R. Q.; Li, Y. W. Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J. Am. Chem. Soc. 2021, 143, 16068–16077.

[17]

Zheng, X. B.; Chen, Y. P.; Lai, W. H.; Li, P.; Ye, C. L.; Liu, N. N.; Dou, S. X.; Pan, H. G.; Sun, W. P. Enriched d-band holes enabling fast oxygen evolution kinetics on atomic-layered defect-rich lithium cobalt oxide nanosheets. Adv. Funct. Mater. 2022, 32, 2200663.

[18]

Deng, L. M.; Hu, F.; Ma, M. Y.; Huang, S. C.; Xiong, Y. X.; Chen, H. Y.; Li, L. L.; Peng, S. J. Electronic modulation caused by interfacial Ni–O–M (M = Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics. Angew. Chem., Int. Ed. 2021, 60, 22276–22282.

[19]

Liu, X. H.; Xi, S. B.; Kim, H.; Kumar, A.; Lee, J.; Wang, J.; Tran, N. Q.; Yang, T.; Shao, X. D.; Liang, M. F. et al. Restructuring highly electron-deficient metal–metal oxides for boosting stability in acidic oxygen evolution reaction. Nat. Commun. 2021, 12, 5676.

[20]

Chen, Z. Y.; Liang, L.; Yuan, H.; Liu, H.; Wu, P.; Fu, M. L.; Wu, J. L.; Chen, P. R.; Qiu, Y. C.; Ye, D. Q. et al. Reciprocal regulation between support defects and strong metal–support interactions for highly efficient reverse water gas shift reaction over Pt/TiO2 nanosheets catalysts. Appl. Catal. B: Environ. 2021, 298, 120507.

[21]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[22]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[23]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[24]

Liu, M. J.; Yang, L. M.; Liu, T.; Tang, Y. H.; Luo, S. L.; Liu, C. B.; Zeng, Y. X. Fe2P/reduced graphene oxide/Fe2P sandwich-structured nanowall arrays: A high-performance non-noble-metal electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2017, 5, 8608–8615.

[25]

Zhang, Y. K.; Lin, Y. X.; Jiang, H. L.; Wu, C. Q.; Liu, H. J.; Wang, C. D.; Chen, S. M.; Duan, T.; Song, L. Well-defined cobalt catalyst with N-doped carbon layers enwrapping: The correlation between surface atomic structure and electrocatalytic property. Small 2018, 14, 1702074.

[26]

Chen, B.; Sun, G. Z.; Wang, J.; Liu, G. G.; Tan, C. L.; Chen, Y.; Cheng, H. F.; Chen, J. Z.; Ma, Q. L.; Huang, L. et al. Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chem. Commun. 2020, 56, 5131–5134.

[27]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc–air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[28]

Kim, S. J.; Mahmood, J.; Kim, C.; Han, G. F.; Kim, S. W.; Jung, S. M.; Zhu, G. M.; De Yoreo, J. J.; Kim, G.; Baek, J. B. Defect-free encapsulation of Fe0 in 2D fused organic networks as a durable oxygen reduction electrocatalyst. J. Am. Chem. Soc. 2018, 140, 1737–1742.

[29]

Peng, Z. K.; Wang, H. Y.; Zhou, L. L.; Wang, Y. B.; Gao, J.; Liu, G. J.; Redfern, S. A. T.; Feng, X. L.; Lu, S. Y.; Li, B. J. et al. Hollow carbon shells enhanced by confined ruthenium as cost–efficient and superior catalysts for the alkaline hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 6676–6685.

[30]

Lee, W. H.; Ko, Y. J.; Kim, J. H.; Choi, C. H.; Chae, K. H.; Kim, H.; Hwang, Y. J.; Min, B. K.; Strasser, P.; Oh, H. S. High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nat. Commun. 2021, 12, 4271.

[31]

Chen, H.; Liang, X.; Liu, Y. P.; Ai, X.; Asefa, T.; Zou, X. X. Active site engineering in porous electrocatalysts. Adv. Mater. 2020, 32, 2002435.

[32]

Jiao, Y. Q.; Yan, H. J.; Wang, R. H.; Wang, X. W.; Zhang, X. M.; Wu, A. P.; Tian, C. G.; Jiang, B. J.; Fu, H. G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 49596–49606.

[33]

Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal–organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

[34]

Fan, H.; Huang, X.; Shang, L.; Cao, Y. T.; Zhao, Y. F.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Controllable synthesis of ultrathin transition-metal hydroxide nanosheets and their extended composite nanostructures for enhanced catalytic activity in the heck reaction. Angew. Chem., Int. Ed. 2016, 55, 2167–2170.

[35]

Hoekstra, J.; Beale, A. M.; Soulimani, F.; Versluijs-Helder, M.; Geus, J. W.; Jenneskens, L. W. Base metal catalyzed graphitization of cellulose: A combined Raman spectroscopy, temperature-dependent X-ray diffraction and high-resolution transmission electron microscopy study. J. Phys. Chem. C 2015, 119, 10653–10661.

[36]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[37]

Li, T. F.; Liu, J. J.; Song, Y.; Wang, F. Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal. 2018, 8, 8450–8458.

[38]

Yan, H. J.; Xie, Y.; Jiao, Y. Q.; Wu, A. P.; Tian, C. G.; Zhang, X. M.; Wang, L.; Fu, H. G. Holey reduced graphene oxide coupled with an Mo2N−Mo2C heterojunction for efficient hydrogen evolution. Adv. Mater. 2018, 30, 1704156.

[39]

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

[40]

Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.

[41]

Xiao, M. L.; Zhu, J. B.; Li, S.; Li, G. R.; Liu, W. W.; Deng, Y. P.; Bai, Z. Y.; Ma, L. Y.; Feng, M.; Wu, T. P. et al. 3d-orbital occupancy regulated Ir-Co atomic pair toward superior bifunctional oxygen electrocatalysis. ACS Catal. 2021, 11, 8837–8846.

[42]

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

[43]

Lei, C. J.; Wang, Y.; Hou, Y.; Liu, P.; Yang, J.; Zhang, T.; Zhuang, X. D.; Chen, M. W.; Yang, B.; Lei, L. C. et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 2019, 12, 149–156.

[44]

Sanchez Casalongue, H. G.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7169–7172.

[45]

Han, H.; Jin, S.; Park, S.; Seo, M. H.; Kim, W. B. Atomic iridium species anchored on porous carbon network support: An outstanding electrocatalyst for CO2 conversion to CO. Appl. Catal. B: Environ. 2021, 292, 120173.

[46]

Freakley, S. J.; Ruiz-Esquius, J.; Morgan, D. J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interface Anal. 2017, 49, 794–799.

[47]

Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.; Peng, Q.; Zhuang, Z. B.; Xiao, H.; Pan, Y.; Lu, S. Q. et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.

[48]

Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.

[49]

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem. 2020, 12, 764–772.

[50]

Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.

[51]

Li, F.; Han, G. F.; Noh, H. J.; Jeon, J. P.; Ahmad, I.; Chen, S. S.; Yang, C.; Bu, Y. F.; Fu, Z. P.; Lu, Y. L. et al. Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nat. Commun. 2019, 10, 4060.

[52]

Xiao, M. L.; Zhu, J. B.; Li, G. R.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P. X.; Xu, P.; Jiang, G. P. et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9640–9645.

[53]

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

[54]

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

[55]

Han, A. J.; Chen, W. X.; Zhang, S. L.; Zhang, M. L.; Han, Y. H.; Zhang, J.; Ji, S. F.; Zheng, L. R.; Wang, Y.; Gu, L. et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 2018, 30, 1706508.

[56]

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

[57]

Zhu, Y. P.; Chen, G.; Xu, X. M.; Yang, G. M.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons. ACS Catal. 2017, 7, 3540–3547.

[58]

Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.

[59]

Liu, M. Q.; Wang, J. A.; Klysubun, W.; Wang, G. G.; Sattayaporn, S.; Li, F.; Cai, Y. W.; Zhang, F. C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 2021, 12, 5260.

[60]

Zhao, Y. F.; Kumar, P. V.; Tan, X.; Lu, X. X.; Zhu, X. F.; Jiang, J. J.; Pan, J.; Xi, S. B.; Yang, H. Y.; Ma, Z. P. et al. Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 2022, 13, 2430.

[61]

Amiinu, I. S.; Liu, X. B.; Pu, Z. H.; Li, W. Q.; Li, Q. D.; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–air batteries. Adv. Funct. Mater. 2018, 28, 1704638.

[62]

Yao, N.; Wang, G. W.; Jia, H. N.; Yin, J. L.; Cong, H. J.; Chen, S. L.; Luo, W. Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation. Angew. Chem., Int. Ed. 2022, 61, e202117178.

[63]

Li, J. Z.; Li, H.; Xie, W. F.; Li, S. J.; Song, Y. K.; Fan, K.; Lee, J. Y.; Shao, M. F. Flame-assisted synthesis of O-coordinated single-atom catalysts for efficient electrocatalytic oxygen reduction and hydrogen evolution reaction. Small Methods 2022, 6, 2101324.

[64]

Liu, D. B.; Zhao, Y.; Wu, C. Q.; Xu, W. J.; Xi, S. B.; Chen, M. X.; Yang, L.; Zhou, Y. Z.; He, Q.; Li, X. Y. et al. Triggering electronic coupling between neighboring hetero-diatomic metal sites promotes hydrogen evolution reaction kinetics. Nano Energy 2022, 98, 107296.

[65]

Feng, G.; Ning, F. H.; Song, J.; Shang, H. F.; Zhang, K.; Ding, Z. P.; Gao, P.; Chu, W. S.; Xia, D. G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127.

[66]

Huang, H. P.; Fu, L. H.; Kong, W. Q.; Ma, H. R.; Zhang, X.; Cai, J. L.; Wang, S. P.; Xie, Z. X.; Xie, S. F. Equilibrated PtIr/IrOx atomic heterojunctions on ultrafine 1D nanowires enable superior dual-electrocatalysis for overall water splitting. Small 2022, 18, 2201333.

[67]

Luo, Z. Y.; Ouyang, Y. X.; Zhang, H.; Xiao, M. L.; Ge, J. J.; Jiang, Z.; Wang, J. L.; Tang, D. M.; Cao, X. Z.; Liu, C. P. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120.

[68]

Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; Xia, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 2021, 33, 2008599.

Nano Research
Pages 2011-2019
Cite this article:
Zhang Y, Yan Z, Gao Y, et al. Electron modulation by atomic Ir site decoration in porous Co/N co-doped carbon for electrocatalytic hydrogen evolution. Nano Research, 2023, 16(2): 2011-2019. https://doi.org/10.1007/s12274-022-4855-8
Topics:

939

Views

14

Crossref

10

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 21 June 2022
Revised: 29 July 2022
Accepted: 02 August 2022
Published: 03 September 2022
© Tsinghua University Press 2022
Return