AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress in single-atom nanozymes research

Bing JiangZhanjun Guo( )Minmin Liang( )
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

Single-atom nanozymes with well-defined atomic structure and electronic coordination environments have been widely developed as favorable alternatives to natural enzymes by mimicking the highly evolved catalytic sites of natural enzymes at the atomic level.

Abstract

Single-atom nanozyme (SAzyme) is the hot topic of the current nanozyme research. Its intrinsic properties, such as high activity, stability, and low cost, present great substitutes to natural enzymes. Moreover, its fundamental characteristics, i.e., maximized atom utilizations and well-defined geometric and electronic structures, lead to higher catalytic activities and specificity than traditional nanozymes. SAzymes have been applied in many biomedical areas, such as anti-tumor therapy, biosensing, antibiosis, and anti-oxidation therapy. Here, we will discuss a series of representative examples of SAzymes categorized by their biomedical applications in this review. In the end, we will address the future opportunities and challenges SAzymes facing in their designs and applications.

References

[1]

Gao, L. Z.; Yan, X. Y. Nanozymes: An emerging field bridging nanotechnology and biology. Sci. China Life Sci. 2016, 59, 400–402.

[2]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[3]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[4]

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[5]

Vernekar, A. A.; Das, T.; Ghosh, S.; Mugesh, G. A remarkably efficient MnFe2O4-based oxidase nanozyme. Chem. Asian J. 2016, 11, 72–76.

[6]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[7]

Yang, M.; Jiang, W.; Pan, Z. Q.; Zhou, H. Synthesis, characterization and SOD-like activity of histidine immobilized silica nanoparticles. J. Inorg. Organomet. Polym. Mater. 2015, 25, 1289–1297.

[8]

Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.

[9]

Periasamy, A. P.; Roy, P.; Wu, W. P.; Huang, Y. H.; Chang, H. T. Glucose oxidase and horseradish peroxidase like activities of cuprous oxide/polypyrrole composites. Electrochim. Acta 2016, 215, 253–260.

[10]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[11]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[12]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[13]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[14]
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res., in press, https://doi.org/10.1007/s12274-022-4429-9.
[15]

Lyu, Z. Y.; Ding, S. C.; Zhang, N.; Zhou, Y.; Cheng, N.; Wang, M. Y.; Xu, M. J.; Feng, Z. X.; Niu, X. H.; Cheng, Y. et al. Single-atom nanozymes linked immunosorbent assay for sensitive detection of Aβ 1-40: A biomarker of Alzheimer’s disease. Research 2020, 2020, 4724505.

[16]

Chen, F.; Jiang, X. Z.; Zhang, L. L.; Lang, R.; Qiao, B. T. Single-atom catalysis: Bridging the homo- and heterogeneous catalysis. Chin. J. Catal. 2018, 39, 893–898.

[17]

Pei, J. H.; Zhao, R. L.; Mu, X. Y.; Wang, J. Y.; Liu, C. L.; Zhang, X. D. Single-atom nanozymes for biological applications. Biomater. Sci. 2020, 8, 6428–6441.

[18]

Shi, Q. L.; Yu, T. R.; Wu, R. F.; Liu, J. Metal–support interactions of single-atom catalysts for biomedical applications. ACS Appl. Mater. Interfaces 2021, 13, 60815–60836.

[19]

Wang, D. D.; Wu, H. H.; Phua, S. Z. F.; Yang, G. B.; Lim, W. Q.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.

[20]

Lu, X. Y.; Gao, S. S.; Lin, H.; Yu, L. D.; Han, Y. H.; Zhu, P.; Bao, W. C.; Yao, H. L.; Chen, Y.; Shi, J. L. Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy. Adv. Mater. 2020, 32, 2002246.

[21]

Wang, W. Y.; Zhu, Y.; Zhu, X. R.; Zhao, Y. F.; Xue, Z. G.; Xiong, C.; Wang, Z. Y.; Qu, Y. T.; Cheng, J. J.; Chen, M. et al. Biocompatible ruthenium single-atom catalyst for cascade enzyme-mimicking therapy. ACS Appl. Mater. Interfaces 2021, 13, 45269–45278.

[22]

Xing, Y. X.; Wang, L.; Wang, L. C.; Huang, J. X.; Wang, S.; Xie, X. Y.; Zhu, J.; Ding, T.; Cai, K. Y.; Zhang, J. X. Flower-like nanozymes with large accessibility of single atom catalysis sites for ROS generation boosted tumor therapy. Adv. Funct. Mater. 2022, 32, 2111171.

[23]

Xu, B. L.; Li, S. S.; Zheng, L. R.; Liu, Y. H.; Han, A.; Zhang, J.; Huang, J. J.; Xie, H. J.; Fan, K. L.; Gao, L. Z. et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 2022, 34, 2107088.

[24]

Su, Y. T.; Wu, F.; Song, Q. X.; Wu, M. J.; Mohammadniaei, M.; Zhang, T. W.; Liu, B. L.; Wu, S. S.; Zhang, M.; Li, A. et al. Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow. Biomaterials 2022, 281, 121325.

[25]

Qi, P. Y.; Zhang, J. Y.; Bao, Z. R.; Liao, Y. P.; Liu, Z. M.; Wang, J. K. A platelet-mimicking single-atom nanozyme for mitochondrial damage-mediated mild-temperature photothermal therapy. ACS Appl. Mater. Interfaces 2022, 14, 19081–19090.

[26]

Liu, Y.; Yao, M.; Han, W. X.; Zhang, H. R.; Zhang, S. S. Construction of a single-atom nanozyme for enhanced chemodynamic therapy and chemotherapy. Chem.—Eur. J. 2021, 27, 13418–13425.

[27]

Wang, H.; Wang, Y.; Lu, L. L.; Ma, Q.; Feng, R. X.; Xu, S. Y.; James, T. D.; Wang, L. Y. Reducing valence states of Co active sites in a single-atom nanozyme for boosted tumor therapy. Adv. Funct. Mater. 2022, 32, 2200331.

[28]

Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

[29]

Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem., Int. Ed. 2021, 60, 12971–12979.

[30]

Zhu, D. M.; Chen, H.; Huang, C. Y.; Li, G. X.; Wang, X.; Jiang, W.; Fan, K. L. H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv. Funct. Mater. 2022, 32, 2110268.

[31]

He, H.; Fei, Z. Y.; Guo, T. L.; Hou, Y.; Li, D.; Wang, K. F.; Ren, F. Z.; Fan, K. L.; Zhou, D. J.; Xie, C. M. Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy. Biomaterials 2022, 280, 121272.

[32]

Mao, Y.; Gao, S. J.; Yao, L. L.; Wang, L.; Qu, H.; Wu, Y. E.; Chen, Y.; Zheng, L. Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). J. Hazard. Mater. 2021, 408, 124898.

[33]

Li, R.; He, X. T.; Javed, R.; Cai, J.; Cao, H. M.; Liu, X.; Chen, Q.; Ye, D. X.; Zhao, H. B. Switching on-off-on colorimetric sensor based on Fe-N/S-C single-atom nanozyme for ultrasensitive and multimodal detection of Hg2+. Sci. Total Environ. 2022, 834, 155428.

[34]

Song, G. C.; Li, J. C.; Majid, Z.; Xu, W. T.; He, X. Y.; Yao, Z. Y.; Luo, Y. B.; Huang, K. L.; Cheng, N. Phosphatase-like activity of single-atom Ce-N-C nanozyme for rapid detection of Al3+. Food Chem. 2022, 390, 133127.

[35]

Jiao, L.; Xu, W. Q.; Yan, H. Y.; Wu, Y.; Liu, C. R.; Du, D.; Lin, Y. H.; Zhu, C. Z. Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 2019, 91, 11994–11999.

[36]

Wu, W. W.; Huang, L.; Zhu, X. Y.; Chen, J. X.; Chao, D. Y.; Li, M. H.; Wu, S. L.; Dong, S. J. Reversible inhibition of the oxidase-like activity of Fe single-atom nanozymes for drug detection. Chem. Sci. 2022, 13, 4566–4572.

[37]

Lin, Y. M.; Wang, F.; Yu, J.; Zhang, X.; Lu, G. P. Iron single-atom anchored N-doped carbon as a “laccase-like” nanozyme for the degradation and detection of phenolic pollutants and adrenaline. J. Hazard. Mater. 2022, 425, 127763.

[38]

Feng, M.; Zhang, Q.; Chen, X. F.; Deng, D.; Xie, X. Y.; Yang, X. P. Controllable synthesis of boron-doped Zn-N-C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine. Biosens. Bioelectron. 2022, 210, 114294.

[39]

Li, H.; Li, Q. L.; Shi, Q.; Wang, Y. J.; Liu, X. W.; Tian, H.; Wang, X. R.; Yang, D. Z.; Yang, Y. L. Hemin loaded Zn-N-C single-atom nanozymes for assay of propyl gallate and formaldehyde in food samples. Food Chem. 2022, 389, 132985.

[40]

Yan, H. Y.; Jiao, L.; Wang, H. J.; Zhu, Y. M.; Chen, Y. F.; Shuai, L.; Gu, M.; Qiu, M.; Gu, W. L.; Zhu, C. Z. Single-atom Bi-anchored Au hydrogels with specifically boosted peroxidase-like activity for cascade catalysis and sensing. Sensor. Actuat. B: Chem. 2021, 343, 130108.

[41]

Sun, L. P.; Yan, Y.; Chen, S.; Zhou, Z. J.; Tao, W.; Li, C.; Feng, Y.; Wang, F. Co-N-C single-atom nanozymes with oxidase-like activity for highly sensitive detection of biothiols. Anal. Bioanal. Chem. 2022, 414, 1857–1865.

[42]

Wu, Y.; Wu, J. B.; Jiao, L.; Xu, W. Q.; Wang, H. J.; Wei, X. Q.; Gu, W. L.; Ren, G. X.; Zhang, N.; Zhang, Q. H. et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 2020, 92, 3373–3379.

[43]

Zhou, X. B.; Wang, M. K.; Chen, J. Y.; Xie, X. L.; Su, X. G. Peroxidase-like activity of Fe-N-C single-atom nanozyme based colorimetric detection of galactose. Anal. Chim. Acta 2020, 1128, 72–79.

[44]

Chen, Y. F.; Jiao, L.; Yan, H. Y.; Xu, W. Q.; Wu, Y.; Zheng, L. R.; Gu, W. L.; Zhu, C. Z. Fe-N-C single-atom catalyst coupling with Pt clusters boosts peroxidase-like activity for cascade-amplified colorimetric immunoassay. Anal. Chem. 2021, 93, 12353–12359.

[45]

Xu, W. Q.; Song, W. Y.; Kang, Y. K.; Jiao, L.; Wu, Y.; Chen, Y. F.; Cai, X. L.; Zheng, L. R.; Gu, W. L.; Zhu, C. Z. Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal. Chem. 2021, 93, 12758–12766.

[46]

Sun, L. P.; Li, C.; Yan, Y.; Yu, Y.; Zhao, H.; Zhou, Z. J.; Wang, F.; Feng, Y. Engineering DNA/Fe-N-C single-atom nanozymes interface for colorimetric biosensing of cancer cells. Anal. Chim. Acta 2021, 1180, 338856.

[47]

Xiang, H. J.; Feng, W.; Chen, Y. Single-atom catalysts in catalytic biomedicine. Adv. Mater. 2020, 32, 1905994.

[48]

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

[49]

Pan, T.; Chen, H. H.; Gao, X.; Wu, Z. Y.; Ye, Y. W.; Shen, Y. Z. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. J. Hazard. Mater. 2022, 435, 128996.

[50]

Feng, Y. Y.; Qin, J.; Zhou, Y.; Yue, Q.; Wei, J. Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy. J. Colloid Interface Sci. 2022, 606, 826–836.

[51]

Wang, X. W.; Shi, Q. Q.; Zha, Z. B.; Zhu, D. D.; Zheng, L. R.; Shi, L. X.; Wei, X. W.; Lian, L.; Wu, K. L.; Cheng, L. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 2021, 6, 4389–4401.

[52]

Fan, Y. F.; Gan, X. R.; Zhao, H. M.; Zeng, Z. X.; You, W. J.; Quan, X. Multiple application of SAzyme based on carbon nitride nanorod-supported Pt single-atom for H2O2 detection, antibiotic detection and antibacterial therapy. Chem. Eng. J. 2022, 427, 131572.

[53]

Yu, Y.; Cheng, Y.; Tan, L.; Liu, X. M.; Li, Z. Y.; Zheng, Y. F.; Wu, T.; Liang, Y. Q.; Cui, Z. D.; Zhu, S. L. et al. Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis. Chem. Eng. J. 2022, 431, 133279.

[54]

Wang, D. J.; Zhang, B.; Ding, H.; Liu, D.; Xiang, J. Q.; Gao, X. J.; Chen, X. H.; Li, Z. J.; Yang, L.; Duan, H. X. et al. TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano Today 2021, 40, 101243.

[55]

Yan, R. J.; Sun, S.; Yang, J.; Long, W.; Wang, J. Y.; Mu, X. Y.; Li, Q. F.; Hao, W. T.; Zhang, S. F.; Liu, H. L. et al. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano 2019, 13, 11552–11560.

[56]

Lu, M. J.; Wang, C.; Ding, Y. Q.; Peng, M. H.; Zhang, W.; Li, K.; Wei, W.; Lin, Y. Q. Fe-N/C single-atom catalysts exhibiting multienzyme activity and ROS scavenging ability in cells. Chem. Commun. 2019, 55, 14534–14537.

[57]

Cao, F. F.; Zhang, L.; You, Y. W.; Zheng, L. R.; Ren, J. S.; Qu, X. G. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angew. Chem., Int. Ed. 2020, 59, 5108–5115.

[58]

Liu, H. L.; Li, Y. H.; Sun, S.; Xin, Q.; Liu, S. H.; Mu, X. Y.; Yuan, X.; Chen, K.; Wang, H.; Varga, K. et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat. Commun. 2021, 12, 114.

[59]

Chen, Y.; Zou, H.; Yan, B.; Wu, X. J.; Cao, W. W.; Qian, Y. H.; Zheng, L.; Yang, G. W. Atomically dispersed Cu nanozyme with intensive ascorbate peroxidase mimic activity capable of alleviating ROS-mediated oxidation damage. Adv. Sci. 2022, 9, 2103977.

[60]

Ying, Y. R.; Luo, X.; Qiao, J. L.; Huang, H. T. “More is different”: Synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 2021, 31, 2007423.

[61]

Du, C.; Gao, Y. J.; Chen, H. Q.; Li, P.; Zhu, S. Y.; Wang, J. G.; He, Q. G.; Chen, W. A Cu and Fe dual-atom nanozyme mimicking cytochrome c oxidase to boost the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 16994–17001.

[62]

Zhao, M. Y.; Yang, R. G.; Wei, Y. R.; Su, J. J.; Wang, X. N.; Zhang, N.; Sun, P. C.; Chen, D. L.; Zhao, Y. X. Dual isolated bimetal single-atom catalysts for tumor ROS cycle and parallel catalytic therapy. Nano Today 2022, 44, 101493.

[63]

Chen, Q. M.; Liu, Y.; Lu, Y. W.; Hou, Y. J.; Zhang, X. D.; Shi, W. B.; Huang, Y. M. Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes. J. Hazard. Mater. 2022, 422, 126929.

[64]

Ma, C. B.; Xu, Y. P.; Wu, L. X.; Wang, Q.; Zheng, J. J.; Ren, G. X.; Wang, X. Y.; Gao, X. F.; Zhou, M.; Wang, M. et al. Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem., Int. Ed. 2022, 61, e202116170.

Nano Research
Pages 1878-1889
Cite this article:
Jiang B, Guo Z, Liang M. Recent progress in single-atom nanozymes research. Nano Research, 2023, 16(2): 1878-1889. https://doi.org/10.1007/s12274-022-4856-7
Topics:

1202

Views

53

Crossref

52

Web of Science

49

Scopus

5

CSCD

Altmetrics

Received: 02 July 2022
Revised: 29 July 2022
Accepted: 02 August 2022
Published: 12 September 2022
© Tsinghua University Press 2022
Return