AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Defect engineering of electrocatalysts for organic synthesis

Yuxuan Lu1Ling Zhou1Shuangyin Wang1Yuqin Zou1,2( )
Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
Show Author Information

Graphical Abstract

In this review, we highlight the recent advances in the fabrication of electrodes from the perspective of constructing defect sites for electrocatalytic organic synthesis and consider the effects of catalytic mechanisms on structure-property correlations.

Abstract

Electrocatalytic organic synthesis has attracted considerable research attention because it is an efficient and eco-friendly strategy for converting energy sources to value-added chemicals. Defect engineering is a promising strategy for regulating the electronic structure and charge density of electrocatalysts. It endows electrocatalysts with excellent physical and physicochemical properties and optimizes the adsorption energy of the reaction intermediates to reduce the kinetic barriers of the electrosynthesis reaction. Herein, the recent advances related to the use of electrocatalysts for organic synthesis with respect to defects are systematically reviewed. The roles of defects in anodic and cathodic reactions, such as the syntheses of alkanes, alkenes, alcohols, aldehydes, amides, and carboxylic acids, are reviewed. Furthermore, the relationship between the defective structure and electrocatalytic activity is discussed by combining experimental results and theoretical calculations. Finally, the challenges, opportunities, and development prospects of defective electrocatalysts are examined to promote the development of the field of electrocatalytic organic synthesis. This review is expected to help understand the vital role of defects in catalytic processes and the controllable synthesis of efficient electrocatalysts for the production of high-value chemicals.

Electronic Supplementary Material

Download File(s)
12274_2022_4858_MOESM1_ESM.pdf (305.7 KB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2018, 2, 0105.

[3]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[4]

Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L. et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489.

[5]

Francke, R.; Little, R. D. Redox catalysis in organic electrosynthesis: Basic principles and recent developments. Chem. Soc. Rev. 2014, 43, 2492–2521.

[6]

Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

[7]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L. Electrocatalytic hydrogen production trilogy. Angew. Chem., Int. Ed. 2021, 60, 19550–19571.

[8]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[9]

Martirez, J. M. P.; Carter, E. A. Thermodynamic constraints in using AuM (M = Fe, Co, Ni, and Mo) alloys as N2 dissociation catalysts: Functionalizing a Plasmon-active metal. ACS Nano 2016, 10, 2940–2949.

[10]

Xiao, Z. H.; Xie, C.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Recent advances in defect electrocatalysts: Preparation and characterization. J. Energy Chem. 2021, 53, 208–225.

[11]

Yan, X. C.; Jia, Y.; Yao, X. D. Defective structures in metal compounds for energy-related electrocatalysis. Small Struct. 2021, 2, 2000067.

[12]

Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

[13]

Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

[14]

Jia, Y.; Jiang, K.; Wang, H. T.; Yao, X. D. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371–1397.

[15]

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

[16]

Xie, C.; Yan, D. F.; Chen, W.; Zou, Y. Q.; Chen, R.; Zang, S. Q.; Wang, Y. Y.; Yao, X. D.; Wang, S. Y. Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Mater. Today 2019, 31, 47–68.

[17]

Schmitt, R.; Nenning, A.; Kraynis, O.; Korobko, R.; Frenkel, A. I.; Lubomirsky, I.; Haile, S. M.; Rupp, J. L. M. A review of defect structure and chemistry in ceria and its solid solutions. Chem. Soc. Rev. 2020, 49, 554–592.

[18]

Glass, D.; Cortés, E.; Ben-Jaber, S.; Brick, T.; Peveler, W. J.; Blackman, C. S.; Howle, C. R.; Quesada-Cabrera, R.; Parkin, I. P.; Maier, S. A. Dynamics of photo-induced surface oxygen vacancies in metal–oxide semiconductors studied under ambient conditions. Adv. Sci. 2019, 6, 1901841.

[19]

Kroger, F. A. Defect chemistry in crystalline solids. Annu. Rev. Mater. Sci. 1977, 7, 449–475.

[20]

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

[21]

Liu, R.; Wang, Y. Y.; Liu, D. D.; Zou, Y. Q.; Wang, S. Y. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 2017, 29, 1701546.

[22]

Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 2015, 137, 4606–4609.

[23]

Kozlovskiy, A. L.; Kenzhina, I. E.; Zdorovets, M. V. FeCo-Fe2CoO4/Co3O4 nanocomposites: Phase transformations as a result of thermal annealing and practical application in catalysis. Ceram. Int. 2020, 46, 10262–10269.

[24]

Maier, J. Defect chemistry: Composition, transport, and reactions in the solid state; part I: Thermodynamics. Angew. Chem., Int. Ed. 1993, 32, 313–335.

[25]

Maier, J. Defect chemistry: Composition, transport, and reactions in the solid state; part II: Kinetics. Angew. Chem., Int. Ed. 1993, 32, 528–542.

[26]

Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

[27]

Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. R.; Chen, C.; Zou, Y. Q.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv. Mater. 2019, 31, 1901439.

[28]

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

[29]

Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.

[30]

Choi, C.; Cheng, T.; Espinosa, M. F.; Fei, H. L.; Duan, X. F.; Goddard III, W. A.; Huang, Y. A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials. Adv. Mater. 2019, 31, 1805405.

[31]

Zhao, Y.; Tan, X.; Yang, W. F.; Jia, C.; Chen, X. J.; Ren, W. H.; Smith, S. C.; Zhao, C. Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 21493–21498.

[32]

Yang, D. X.; Zhu, Q. G.; Sun, X. F.; Chen, C. J.; Guo, W. W.; Yang, G. Y.; Han, B. X. Electrosynthesis of a defective indium selenide with 3D structure on a substrate for tunable CO2 electroreduction to syngas. Angew. Chem. 2020, 132, 2374–2379.

[33]

Chen, Z. Q.; Wang, T.; Liu, B.; Cheng, D. F.; Hu, C. L.; Zhang, G.; Zhu, W. J.; Wang, H. Y.; Zhao, Z. J.; Gong, J. L. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J. Am. Chem. Soc. 2020, 142, 6878–6883.

[34]

Wu, J. J.; Liu, M. J.; Sharma, P. P.; Yadav, R. M.; Ma, L. L.; Yang, Y. C.; Zou, X. L.; Zhou, X. D.; Vajtai, R.; Yakobson, B. I. et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 2016, 16, 466–470.

[35]

Dou, S.; Dong, C. L.; Hu, Z.; Huang, Y. C.; Chen, J. L.; Tao, L.; Yan, D. F.; Chen, D. W.; Shen, S. H.; Chou, S. L. et al. Atomic-scale CoOx species in metal–organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1702546.

[36]

Xiao, Z. H.; Huang, X. B.; Xu, L.; Yan, D. F.; Huo, J.; Wang, S. Y. Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction. Chem. Commun. 2016, 52, 13008–13011.

[37]

Ge, R. X.; Li, L.; Su, J. W.; Lin, Y. C.; Tian, Z. Q.; Chen, L. Electrocatalysts: Ultrafine defective RuO2 electrocatalyst integrated on carbon cloth for robust water oxidation in acidic media. Adv. Energy. Mater. 2019, 9, 1970136.

[38]

Yang, D. S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J. S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 2012, 134, 16127–16130.

[39]

Xiao, P.; Ge, X. M.; Wang, H. B.; Liu, Z. L.; Fisher, A.; Wang, X. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1520–1526.

[40]

Wang, X.; Jia, Y.; Mao, X.; Zhang, L. Z.; Liu, D. B.; Song, L.; Yan, X. C.; Chen, J.; Yang, D. J.; Zhou, J. Z. et al. A directional synthesis for topological defect in carbon. Chem 2020, 6, 2009–2023.

[41]

Ma, Z. L.; Dou, S.; Shen, A. L.; Tao, L.; Dai, L. M.; Wang, S. Y. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2015, 54, 1888–1892.

[42]

Jeon, I. Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.

[43]

Chen, C.; Zhu, X. R.; Wen, X. J.; Zhou, Y. Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q. L.; Du, S. Q.; Liu, T. T. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724.

[44]

Santhosh, N. M.; Filipič, G.; Tatarova, E.; Baranov, O.; Kondo, H.; Sekine, M.; Hori, M.; Ostrikov, K.; Cvelbar, U. Oriented carbon nanostructures by plasma processing: Recent advances and future challenges. Micromachines 2018, 9, 565.

[45]

Yu, F.; Liu, M. C.; Ma, C. H.; Di, L. B.; Dai, B.; Zhang, L. L. A review on the promising plasma-assisted preparation of electrocatalysts. Nanomaterials 2019, 9, 1436.

[46]

Meng, N. N.; Huang, Y. M.; Liu, Y.; Yu, Y. F.; Zhang, B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep. Phys. Sci. 2021, 2, 100378.

[47]

Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C–N bonds to nitrile C≡N bonds. Angew. Chem., Int. Ed. 2020, 59, 16974–16981.

[48]

Yan, C. S.; Fang, Z. W.; Lv, C. D.; Zhou, X.; Chen, G.; Yu, G. H. Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano 2018, 12, 8670–8677.

[49]

Han, L.; Sun, Y. Y.; Li, S.; Cheng, C.; Halbig, C. E.; Feicht, P.; Hübner, J. L.; Strasser, P.; Eigler, S. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 2019, 9, 1283–1288.

[50]

Zheng, J. Y.; Lyu, Y. H.; Xie, C.; Wang, R. L.; Tao, L.; Wu, H. B.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Defect-enhanced charge separation and transfer within protection layer/semiconductor structure of photoanodes. Adv. Mater. 2018, 30, 1801773.

[51]

Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

[52]

Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.

[53]

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

[54]

Esch, F.; Fabris, S.; Zhou, L.; Montini, T.; Africh, C.; Fornasiero, P.; Comelli, G.; Rosei, R. Electron localization determines defect formation on ceria substrates. Science 2005, 309, 752–755.

[55]

Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

[56]

Huang, Y.;Chong, X.;Liu, C.;Liang, Y.; Zhang, B. Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angew. Chem., Int. Ed. 2018, 57, 13163–13166.

[57]

Zhou, P.; Wang, Y. Y.; Xie, C.; Chen, C.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chem. Commun. 2017, 53, 11778–11781.

[58]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Y. B.; Li, Y. Y.; Zhang, N. N.; Chen, W.; Zhou, L.; Lin, H. Z. et al. Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci. China Chem. 2020, 63, 980–986.

[59]

Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290.

[60]

Li, X. H.; Li, T. S.; Ma, Y. J.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L. et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.

[61]

Vindigni, F.; Manzoli, M.; Damin, A.; Tabakova, T.; Zecchina, A. Surface and inner defects in Au/CeO2 WGS catalysts: Relation between Raman properties, reactivity, and morphology. Chem. —Eur. J. 2011, 17, 4356–4361.

[62]

Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130.

[63]

Beams, R.; Cançado, L. G.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 2015, 27, 083002.

[64]

Zhang, D. L.; Mou, H. Y.; Lu, F.; Song, C. X.; Wang, D. B. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Appl. Catal. B: -Environ. 2019, 254, 471–478.

[65]

Li, X. D.; Wang, S. M.; Li, L.; Sun, Y. F.; Xie, Y. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9567–9581.

[66]

Zhang, K.; Zhang, G.; Qu, J. H.; Liu, H. J. Disordering the atomic structure of Co(II) oxide via B-doping: An efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts. Small 2018, 14, 1802760.

[67]

Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545–4549.

[68]

Di Valentin, C.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B 2005, 109, 11414–11419.

[69]

Yin, J.; Jin, J.; Lu, M.; Huang, B. L.; Zhang, H.; Peng, Y.; Xi, P. X.; Yan, C. H. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. J. Am. Chem. Soc. 2020, 142, 18378–18386.

[70]

Yan, H.; Shen, Q.; Sun, Y. H.; Zhao, S. M.; Lu, R. L.; Gong, M. C.; Liu, Y. B.; Zhou, X.; Jin, X.; Feng, X. et al. Tailoring facets of α-Mn2O3 microcrystalline catalysts for enhanced selective oxidation of glycerol to glycolic acid. ACS Catal. 2021, 11, 6371–6383.

[71]

Jiang, Y.; Yang, Y.; Xu, R.; Cheng, X. L.; Huang, H. J.; Shi, P. C.; Yao, Y.; Yang, H.; Li, D. J.; Zhou, X. F. et al. Ultrafast potassium storage in F-induced ultra-high edge-defective carbon nanosheets. ACS Nano 2021, 15, 10217–10227.

[72]

Peña-Garcia, R.; Guerra, Y.; Castro-Lopes, S.; Camejo, Y. M.; Soares, J. M.; Franco, A.; Padrón-Hernández, E.; Cabrera-Baez, M. Morphological, magnetic and EPR studies of ZnO nanostructures doped and co-doped with Ni and Sr. Ceram. Int. 2021, 47, 28714–28722.

[73]

Wang, Q.; Edalati, K.; Koganemaru, Y.; Nakamura, S.; Watanabe, M.; Ishihara, T.; Horita, Z. Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO2) produced by high-pressure torsion. J. Mater. Chem. A 2020, 8, 3643–3650.

[74]

Sontheimer, T.; Schnegg, A.; Steffens, S.; Ruske, F.; Amkreutz, D.; Lips, K.; Rech, B. Identification of intra-grain and grain boundary defects in polycrystalline Si thin films by electron paramagnetic resonance. Phys. Status Solidi Rapid Res. Lett. 2013, 7, 959–962.

[75]

Chen, Z. X.; Su, Y.; Tang, X. H.; Zhang, X. J.; Duan, C. H.; Huang, F.; Li, Y. Manipulating grain boundary defects in π-conjugated covalent organic frameworks enabling intrinsic radical generation for photothermal conversion. Sol. RRL 2021, 5, 2100762.

[76]

Han, C.; Pelaez, M.; Likodimos, V.; Kontos, A. G.; Falaras, P.; O’Shea, K.; Dionysiou, D. D. Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B: -Environ. 2011, 107, 77–87.

[77]

Zhang, Y. B.; Xue, Z. M.; Zhao, X. H.; Zhang, B. L.; Mu, T. C. Controllable and facile preparation of Co9S8-Ni3S2 heterostructures embedded with N, S, O-tri-doped carbon for electrocatalytic oxidation of 5-hydroxymethylfurfural. Green Chem. 2022, 24, 1721–1731.

[78]

Song, S. Q.; Li, Y.; Shi, Y. F.; Xu, Y. H.; Niu, Y. S. Oxygen-doped MoS2 nanoflowers with sulfur vacancies as electrocatalyst for efficient hydrazine oxidation. J. Electroanal. Chem. 2022, 906, 115986.

[79]

Liu, B. Y.; Xu, S. J.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y. Q.; Wang, Y. C.; Gibson, E. K.; Catlow, C. R. A.; Yan, K. Electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural and furfural over oxygen vacancy-rich NiCoMn-layered double hydroxides nanosheets. Green Chem. 2021, 23, 4034–4043.

[80]

Zhang, Y. G.; Zhang, Y. H.; Zhang, H. F.; Bai, L. Q.; Hao, L.; Ma, T. Y.; Huang, H. W. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147.

[81]

Kumar, M.; Yun, J. H.; Bhatt, V.; Singh, B.; Kim, J.; Kim, J. S.; Kim, B. S.; Lee, C. Y. Role of Ce3+ valence state and surface oxygen vacancies on enhanced electrochemical performance of single step solvothermally synthesized CeO2 nanoparticles. Electrochim. Acta 2018, 284, 709–720.

[82]

Wang, D. B.; Yu, H. T.; Zhu, Y. B.; Song, C. X. NiO nanosheets rooting into Ni-doped CeO2 microspheres for high performance of CO catalytic oxidation. Mater. Lett. 2017, 198, 168–171.

[83]

Soni, S.; Dave, M.; Dalela, B.; Alvi, P. A.; Kumar, S.; Sharma, S. S.; Phase, D. M.; Gupta, M.; Dalela, S. Effect of defects and oxygen vacancies on the RTFM properties of pure and Gd-doped CeO2 nanomaterials through soft XAS. Appl. Phys. A 2020, 126, 585.

[84]

Fan, W. J.; Li, H. B.; Zhao, F. Y.; Xiao, X. J.; Huang, Y. C.; Ji, H. B.; Tong, Y. X. Boosting the photocatalytic performance of (001) BiOI: Enhancing donor density and separation efficiency of photogenerated electrons and holes. Chem. Commun. 2016, 52, 5316–5319.

[85]

Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135, 10411–10417.

[86]

Elsayed, M.; Krause-Rehberg, R.; Eisenschmidt, C.; Eißmann, N.; Kieback, B. Defect study in CoCrFeMnNi high entropy alloy by positron annihilation lifetime spectroscopy. Phys. Status Solidi A 2018, 215, 1800036.

[87]

Luo, Z. Y.; Ouyang, Y. X.; Zhang, H.; Xiao, M. L.; Ge, J. J.; Jiang, Z.; Wang, J. L.; Tang, D. M.; Cao, X. Z.; Liu, C. P. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120.

[88]

Yudanov, I. V.; Sahnoun, R.; Neyman, K. M.; Rösch, N.; Hoffmann, J.; Schauermann, S.; Johánek, V.; Unterhalt, H.; Rupprechter, G.; Libuda, J. et al. CO adsorption on Pd nanoparticles: Density functional and vibrational spectroscopy studies. J. Phys. Chem. B 2003, 107, 255–264.

[89]

Liu, Y.; Wu, Z.; Kuhlenbeck, H.; Freund, H. J. Surface action spectroscopy: A review and a perspective on a new technique to study vibrations at surfaces. Chem. Rec. 2021, 21, 1270–1283.

[90]

Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949–983.

[91]

Hu, J. T.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q. H.; Wen, W.; Yu, S. S.; Pan, Y. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250.

[92]

Söngen, H.; Reischl, B.; Miyata, K.; Bechstein, R.; Raiteri, P.; Rohl, A. L.; Gale, J. D.; Fukuma, T.; Kühnle, A. Resolving point defects in the hydration structure of calcite (10.4) with three-dimensional atomic force microscopy. Phys. Rev. Lett. 2018, 120, 116101.

[93]

Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628–7658.

[94]

Xie, C.; Yan, D. F.; Li, H.; Du, S. Q.; Chen, W.; Wang, Y. Y.; Zou, Y. Q.; Chen, R.; Wang, S. Y. Defect chemistry in heterogeneous catalysis: Recognition, understanding, and utilization. ACS Catal. 2020, 10, 11082–11098.

[95]

Zhao, H. Y.; Sun, C. H.; Jin, Z.; Wang, D. W.; Yan, X. C.; Chen, Z. G.; Zhu, G. S.; Yao, X. D. Carbon for the oxygen reduction reaction: A defect mechanism. J. Mater. Chem. A 2015, 3, 11736–11739.

[96]

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

[97]

Zhao, Y. G.; Liu, C. B.; Wang, C. H.; Chong, X. D.; Zhang, B. Sulfur vacancy-promoted highly selective electrosynthesis of functionalized aminoarenes via transfer hydrogenation of nitroarenes with H2O over a Co3S4−x nanosheet cathode. CCS Chem. 2021, 3, 507–515.

[98]

Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N–N bond. Angew. Chem., Int. Ed. 2021, 60, 7297–7307.

[99]

Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Huang, Y. C.; Li, Y. F.; Chen, J.; Zou, Y. Q.; Wang, S. Y. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 2021, 33, 2007056.

[100]

Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Yang, C. M.; Zhou, L.; Huang, Y. C.; Li, Y. F.; Zhou, B.; Zou, Y. Q.; Wang, S. Y. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 2022, 34, 2107185.

[101]

Peng, T.; Zhuang, T. T.; Yan, Y.; Qian, J.; Dick, G. R.; De Bueren, J. B.; Hung, S. F.; Zhang, Y.; Wang, Z. Y.; Wicks, J. et al. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 2021, 143, 17226–17235.

[102]

Wang, X. P.; Xi, S. B.; Lee, W. S. V.; Huang, P. R.; Cui, P.; Zhao, L.; Hao, W. C.; Zhao, X. S.; Wang, Z. B.; Wu, H. J. et al. Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nat. Commun. 2020, 11, 4647.

[103]

Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.

[104]

Wu, Y. M.; Liu, C. B.; Wang, C. H.; Yu, Y. F.; Shi, Y. M.; Zhang, B. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat. Commun. 2021, 12, 3881.

[105]

Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K. S. Unraveling two pathways for electrochemical alcohol and aldehyde oxidation on NiOOH. J. Am. Chem. Soc. 2020, 142, 21538–21547.

[106]

Lopez-Ruiz, J. A.; Andrews, E.; Akhade, S. A.; Lee, M. S.; Koh, K.; Sanyal, U.; Yuk, S. F.; Karkamkar, A. J.; Derewinski, M. A.; Holladay, J. et al. Understanding the role of metal and molecular structure on the electrocatalytic hydrogenation of oxygenated organic compounds. ACS Catal. 2019, 9, 9964–9972.

[107]

Kwon, Y.; Lai, S. C. S.; Rodriguez, P.; Koper, M. T. M. Electrocatalytic oxidation of alcohols on gold in alkaline media: Base or gold catalysis? J. Am. Chem. Soc. 2011, 133, 6914–6917.

[108]

Liu, R.; Zhao, H. C.; Zhao, X. Y.; He, Z. L.; Lai, Y. J.; Shan, W. Y.; Bekana, D.; Li, G.; Liu, J. F. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads. Environ. Sci. Technol. 2018, 52, 9992–10002.

[109]

Kuznetsov, D. A.; Han, B. H.; Yu, Y.; Rao, R. R.; Hwang, J.; Román-Leshkov, Y.; Shao-Horn, Y. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2018, 2, 225–244.

[110]

Chen, W.; Xie, C.; Wang, Y. Y.; Zou, Y. Q.; Dong, C. L.; Huang, Y. C.; Xiao, Z. H.; Wei, Z. X.; Du, S. Q.; Chen, C. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 2020, 6, 2974–2993.

[111]

Yuan, Y.; Lei, A. W. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc. Chem. Res. 2019, 52, 3309–3324.

[112]

Tang, S.; Liu, Y. C.; Lei, A. W. Electrochemical oxidative cross-coupling with hydrogen evolution: A green and sustainable way for bond formation. Chem 2018, 4, 27–45.

[113]

Chadderdon, X. H.; Chadderdon, D. J.; Matthiesen, J. E.; Qiu, Y.; Carraher, J. M.; Tessonnier, J. P.; Li, W. Z. Mechanisms of furfural reduction on metal electrodes: Distinguishing pathways for selective hydrogenation of bioderived oxygenates. J. Am. Chem. Soc. 2017, 139, 14120–14128.

[114]

Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER, and HER. Energy Environ. Sci. 2019, 12, 322–333.

[115]

Li, Z. J.; Wei, W.; Li, H. H.; Li, S. H.; Leng, L. P.; Zhang, M. Y.; Horton, J. H.; Wang, D. S.; Sun, W. W.; Guo, C. M. et al. Low-temperature synthesis of single palladium atoms supported on defective hexagonal boron nitride nanosheet for chemoselective hydrogenation of cinnamaldehyde. ACS Nano 2021, 15, 10175–10184.

[116]

Hu, T. J.; Zhang, L. N.; Wang, Y.; Yue, Z. Z.; Li, Y.; Ma, J. C.; Xiao, H.; Chen, W. W.; Zhao, M.; Zheng, Z. F. et al. Defect engineering in Pd/NiCo2O4−x for selective hydrogenation of α, β-unsaturated carbonyl compounds under ambient conditions. ACS Sustainable Chem. Eng. 2020, 8, 7851–7859.

[117]

Akhade, S. A.; Singh, N.; Gutiérrez, O. Y.; Lopez-Ruiz, J.; Wang, H. M.; Holladay, J. D.; Liu, Y.; Karkamkar, A.; Weber, R. S.; Padmaperuma, A. B. et al. Electrocatalytic hydrogenation of biomass-derived organics: A review. Chem. Rev. 2020, 120, 11370–11419.

[118]

Horanyi, G.; Torkos, K. Electrocatalytic reduction of simple α, β unsaturated aliphatic carbonyl compounds on a platinized platinum electrode in acid media: Formation of hydrocarbons from acrolein and crotonaldehyde. J. Electroanal. Chem. Interfacial Electrochem. 1982, 136, 301–309.

[119]

Carroll, K. J.; Burger, T.; Langenegger, L.; Chavez, S.; Hunt, S. T.; Román-Leshkov, Y.; Brushett, F. R. Electrocatalytic hydrogenation of oxygenates using earth-abundant transition-metal nanoparticles under mild conditions. ChemSusChem 2016, 9, 1904–1910.

[120]

Sauter, W.; Bergmann, O. L.; Schröder, U. Hydroxyacetone: A glycerol-based platform for electrocatalytic hydrogenation and hydrodeoxygenation processes. ChemSusChem 2017, 10, 3105–3110.

[121]

Huang, X.; Zhang, L.; Li, C. P.; Tan, L. Q.; Wei, Z. D. High selective electrochemical hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuO2-SnO2-TiO2/Ti electrode. ACS Catal. 2019, 9, 11307–11316.

[122]

Han, S. H.; Shi, Y. M.; Wang, C. H.; Liu, C. B.; Zhang, B. Hollow cobalt sulfide nanocapsules for electrocatalytic selective transfer hydrogenation of cinnamaldehyde with water. Cell Rep. Phys. Sci. 2021, 2, 100337.

[123]

Radkowski, K.; Sundararaju, B.; Fürstner, A. A functional-group-tolerant catalytic trans hydrogenation of alkynes. Angew. Chem. 2013, 125, 373–378.

[124]

Carenco, S.; Leyva-Pérez, A.; Concepción, P.; Boissière, C.; Mézailles, N.; Sanchez, C.; Corma, A. Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today 2012, 7, 21–28.

[125]

Shi, Z. J.; Li, N.; Lu, H. K.; Chen, X. P.; Zheng, H. D.; Yuan, Y. F.; Ye, K. Y. Recent advances in the electrochemical hydrogenation of unsaturated hydrocarbons. Curr. Opin. Electrochem. 2021, 28, 100713.

[126]

Wu, Y. M.; Liu, C. B.; Wang, C. H.; Lu, S. Y.; Zhang, B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H(D) source over a Pd-P cathode. Angew. Chem. 2020, 132, 21356–21361.

[127]

Li, J.; He, L. F.; Liu, X.; Cheng, X.; Li, G. G. Electrochemical hydrogenation with gaseous ammonia. Angew. Chem., Int. Ed. 2019, 58, 1759–1763.

[128]

Liu, X.; Liu, R. Y.; Qiu, J. X.; Cheng, X.; Li, G. G. Chemical-reductant-free electrochemical deuteration reaction using deuterium oxide. Angew. Chem., Int. Ed. 2020, 59, 13962–13967.

[129]

Giesbrecht, P. K.; Nemez, D. B.; Herbert, D. E. Electrochemical hydrogenation of a benzannulated pyridine to a dihydropyridine in acidic solution. Chem. Commun. 2018, 54, 338–341.

[130]

Chen, Z.; Cai, C.; Wang, T. Identification of copper as an ideal catalyst for electrochemical alkyne semi-hydrogenation. J. Phys. Chem. C 2022, 126, 3037–3042.

[131]

Gan, G. Q.; Li, X. Y.; Wang, L.; Fan, S. Y.; Li, J.; Liang, F.; Chen, A. C. Identification of catalytic active sites in nitrogen-doped carbon for electrocatalytic dechlorination of 1, 2-dichloroethane. ACS Catal. 2019, 9, 10931–10939.

[132]

Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C. W. Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes. ACS Catal. 2013, 3, 1700–1708.

[133]

Gan, G. Q.; Li, X. Y.; Wang, L.; Fan, S. Y.; Mu, J. C.; Wang, P. L.; Chen, G. H. Active sites in single-atom Fe-Nx-C nanosheets for selective electrochemical dechlorination of 1, 2-dichloroethane to ethylene. ACS Nano 2020, 14, 9929–9937.

[134]

Shen, X. Q.; Xiao, F.; Zhao, H. Y.; Chen, Y.; Fang, C.; Xiao, R.; Chu, W. H.; Zhao, G. H. In situ-formed PdFe nanoalloy and carbon defects in cathode for synergic reduction-oxidation of chlorinated pollutants in electro-Fenton process. Environ. Sci. Technol. 2020, 54, 4564–4572.

[135]

Yin, H. S.; Cao, X. K.; Lei, C.; Chen, W. Q.; Huang, B. B. Insights into electroreductive dehalogenation mechanisms of chlorinated environmental pollutants. ChemElectroChem 2020, 7, 1825–1837.

[136]

Martin, E. T.; McGuire, C. M.; Mubarak, M. S.; Peters, D. G. Electroreductive remediation of halogenated environmental pollutants. Chem. Rev. 2016, 116, 15198–15234.

[137]

Ma, H. X.; Xu, Y. H.; Ding, X. F.; Liu, Q.; Ma, C. A. Electrocatalytic dechlorination of chloropicolinic acid mixtures by using palladium-modified metal cathodes in aqueous solutions. Electrochim. Acta 2016, 210, 762–772.

[138]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[139]

Kong, Y.; Li, Y.; Yang, B.; Li, Z. J.; Yao, Y.; Lu, J. G.; Lei, L. C.; Wen, Z. H.; Shao, M. H.; Hou, Y. Boron, and nitrogen co-doped porous carbon nanofibers as metal-free electrocatalysts for highly efficient ammonia electrosynthesis. J. Mater. Chem. A 2019, 7, 26272–26278.

[140]

Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.

[141]

Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

[142]

Gan, G. Q.; Fan, S. Y.; Li, X. Y.; Wang, J.; Bai, C. P.; Guo, X. C.; Tade, M.; Liu, S. M. Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1, 2-dichloroethane to ethylene. ACS Catal. 2021, 11, 14284–14292.

[143]

Chen, L.; Wang, Q.; Gong, H. R.; Xue, M. S. Single Mo atom supported on defective BC2N monolayers as promising electrochemical catalysts for nitrogen reduction reaction. Appl. Surf. Sci. 2021, 546, 149131.

[144]

Cao, N.; Quan, Y. L.; Guan, A. X.; Yang, C.; Ji, Y. L.; Zhang, L. J.; Zheng, G. F. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 2020, 577, 109–114.

[145]

Brillas, E.; Sauleda, R.; Casado, J. Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes. J. Electrochem. Soc. 1998, 145, 759–765.

[146]

Liu, X. C.; He, C. S.; Shen, Z. Y.; Li, W. Q.; Chen, N.; Song, J. S.; Zhou, X. G.; Mu, Y. Mechanistic study of Fe (III) chelate reduction in a neutral electro-Fenton process. Appl. Catal. B: -Environ. 2020, 278, 119347.

[147]

Feng, Y. G.; Yang, H.; Zhang, Y.; Huang, X. Q.; Li, L. G.; Cheng, T.; Shao, Q. Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Lett. 2020, 20, 8282–8289.

[148]

Jouny, M.; Lv, J. J.; Cheng, T.; Ko, B. H.; Zhu, J. J.; Goddard III, W. A.; Jiao, F. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 2019, 11, 846–851.

[149]

Massolo, E.; Pirola, M.; Benaglia, M. Amide bond formation strategies: Latest advances on a dateless transformation. Eur. J. Org. Chem. 2020, 2020, 4641–4651.

[150]

Sabatini, M. T.; Boulton, L. T.; Sneddon, H. F.; Sheppard, T. D. A green chemistry perspective on catalytic amide bond formation. Nat. Catal. 2019, 2, 10–17.

[151]

Wang, X. Challenges and outlook for catalytic direct amidation reactions. Nat. Catal. 2019, 2, 98–102.

[152]

Shibata, M.; Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes: Part VI. Simultaneous reduction of carbon dioxide and nitrite ions with various metallophthalocyanine catalysts. J. Electroanal. Chem. 2001, 507, 177–184.

[153]

Shibata, M.; Yoshida, K.; Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes: III. Simultaneous reduction of carbon dioxide and nitrite ions with various metal catalysts. J. Electrochem. Soc. 1998, 145, 595–600.

[154]

Chen, C.; He, N. H.; Wang, S. Y. Electrocatalytic C-N coupling for urea synthesis. Small Sci. 2021, 1, 2100070.

[155]

Zeng, Y. C.; Priest, C.; Wang, G. F.; Wu, G. Restoring the nitrogen cycle by electrochemical reduction of nitrate: Progress and prospects. Small Methods 2020, 4, 2000672.

[156]

Ranjit, K. T.; Varadarajan, T. K.; Viswanathan, B. Photocatalytic reduction of nitrite and nitrate ions to ammonia on Ru/TiO2 catalysts. J. Photochem. Photobiol. A:Chem. 1995, 89, 67–68.

[157]
DimaG. E.De VooysA. C. A.KoperM. T. M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutionsJ. Electroanal. Chem.2003554–555152310.1016/S0022-0728(02)01443-2

Dima, G. E.; De Vooys, A. C. A.; Koper, M. T. M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J. Electroanal. Chem. 2003, 554–555, 15–23.

[158]

Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.

[159]

Zhou, Y. L.; Gao, Y. J.; Zhong, X.; Jiang, W. B.; Liang, Y. L.; Niu, P. F.; Li, M. C.; Zhuang, G. L.; Li, X. N.; Wang, J. G. Electrocatalytic upgrading of lignin-derived bio-oil based on surface-engineered PtNiB nanostructure. Adv. Funct. Mater. 2019, 29, 1807651.

[160]

Zhang, P. L.; Sun, L. C. Electrocatalytic hydrogenation and oxidation in aqueous conditions. Chin. J. Chem. 2020, 38, 996–1004.

[161]

Zhang, W. J.; Feng, J.; MacDiarmid, A. G.; Epstein, A. J. Synthesis of oligomeric anilines. Synth. Met. 1997, 84, 119–120.

[162]

Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic, and electrocatalytic reactions. Appl. Catal. B: -Environ. 2018, 227, 386–408.

[163]

Marquez, J.; Pletcher, D. A study of the electrochemical reduction of nitrobenzene to p-aminophenol. J. Appl. Electrochem. 1980, 10, 567–573.

[164]

Cyr, A.; Huot, P.; Marcoux, J. F.; Belot, G.; Laviron, E.; Lessard, J. The electrochemical reduction of nitrobenzene and azoxybenzene in neutral and basic aqueous methanolic solutions at polycrystalline copper and nickel electrodes. Electrochim. Acta 1989, 34, 439–445.

[165]

Chong, X. D.; Liu, C. B.; Huang, Y.; Huang, C. Q.; Zhang, B. Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode. Natl. Sci. Rev. 2020, 7, 285–295.

[166]

Liu, C.; Zhang, A. Y.; Pei, D. N.; Yu, H. Q. Efficient electrochemical reduction of nitrobenzene by defect-engineered TiO2−x single crystals. Environ. Sci. Technol. 2016, 50, 5234–5242.

[167]

Yang, C. X.; Chen, H. N.; Peng, T.; Liang, B. Y.; Zhang, Y.; Zhao, W. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. Chin. J. Catal. 2021, 42, 1831–1842.

[168]

Zhou, L.; Zhu, X. R.; Su, H.; Lin, H. Z.; Lyu, Y.; Zhao, X.; Chen, C.; Zhang, N. N.; Xie, C.; Li, Y. Y. et al. Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Sci. China Chem. 2021, 64, 1586–1595.

[169]

Song, Y.; Gutiérrez, O. Y.; Herranz, J.; Lercher, J. A. Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild conditions. Appl. Catal. B: -Environ. 2016, 182, 236–246.

[170]

Sheng, T.; Qi, Y. J.; Lin, X.; Hu, P.; Sun, S. G.; Lin, W. F. Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics. Chem. Eng. J. 2016, 293, 337–344.

[171]

Li, W.; Jiang, N.; Hu, B.; Liu, X.; Song, F. Z.; Han, G. Q.; Jordan, T. J.; Hanson, T. B.; Liu, T. L.; Sun, Y. J. Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron reservoirs. Chem 2018, 4, 637–649.

[172]

Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

[173]

Antolini, E. Pt-Ni and Pt-M-Ni (M = Ru and Sn) anode catalysts for low-temperature acidic direct alcohol fuel cells: A review. Energies 2017, 10, 42.

[174]

Huang, X. Y.; Akdim, O.; Douthwaite, M.; Wang, K.; Zhao, L.; Lewis, R. J.; Pattisson, S.; Daniel, I. T.; Miedziak, P. J.; Shaw, G. et al. Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 2022, 603, 271–275.

[175]

Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.

[176]

Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.

[177]

Yang, X. X.; Deng, P. L.; Liu, D. Y.; Zhao, S.; Li, D.; Wu, H.; Ma, Y. M.; Xia, B. Y.; Li, M. T.; Xiao, C. H. et al. Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction. J. Mater. Chem. A 2020, 8, 2472–2480.

[178]

Chen, G. F.; Luo, Y. R.; Ding, L. X.; Wang, H. H. Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal. 2018, 8, 526–530.

[179]

Shinagawa, T.; Larrazábal, G. O.; Martín, A. J.; Krumeich, F.; Pérez-Ramírez, J. Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to Formate. ACS Catal. 2018, 8, 837–844.

[180]

Cheng, H.; Liu, S.; Zhang, J. D.; Zhou, T. P.; Zhang, N.; Zheng, X. S.; Chu, W. S.; Hu, Z. P.; Wu, C. Z.; Xie, Y. Surface nitrogen-injection engineering for high formation rate of CO2 reduction to Formate. Nano Lett. 2020, 20, 6097–6103.

[181]

Fellinger, T. P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 4072–4075.

[182]

Yang, X. T.; Ma, Y. F.; Liu, Y.; Wang, K. K.; Wang, Y. Q.; Liu, M.; Qiu, X. Q.; Li, W. Z.; Li, J. Defect-induced Ce-doped Bi2WO6 for efficient electrocatalytic N2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 19864–19872.

[183]

Wu, Y.; Muthukrishnan, A.; Nagata, S.; Nabae, Y. Kinetic understanding of the reduction of oxygen to hydrogen peroxide over an N-doped carbon electrocatalyst. J. Phys. Chem. C 2019, 123, 4590–4596.

[184]

Wang, X. P.; Wu, H. J.; Xi, S. B.; Lee, W. S. V.; Zhang, J.; Wu, Z. H.; Wang, J. O.; Hu, T. D.; Liu, L. M.; Han, Y. et al. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy Environ. Sci. 2020, 13, 229–237.

[185]

Huang, X.; Tan, L. Q.; Zhang, L.; Li, C. P.; Wei, Z. D. Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode. Chem. Eng. J. 2020, 382, 123006.

[186]

Mertens, M.; Calberg, C.; Martinot, L.; Jérôme, R. The electroreduction of acrylonitrile: A new insight into the mechanism. Macromolecules 1996, 29, 4910–4918.

[187]

Grasselli, R. K.; Burrington, J. D. Selective oxidation and ammoxidation of propylene by heterogeneous catalysis. Adv. Catal. 1981, 30, 133–163.

[188]

Yi, H.; Zhang, G. T.; Wang, H. M.; Huang, Z. Y.; Wang, J.; Singh, A. K.; Lei, A. W. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 2017, 117, 9016–9085.

[189]

Wang, Y. Z.; Furukawa, S.; Yan, N. Identification of an active NiCu catalyst for nitrile synthesis from alcohol. ACS Catal. 2019, 9, 6681–6691.

[190]

Shen, T.; Wang, T.; Qin, C.; Jiao, N. Silver-catalyzed nitrogenation of alkynes: A direct approach to nitriles through C≡C bond cleavage. Angew. Chem. 2013, 125, 6809–6812.

[191]

Shilov, A. E.; Shul’pin, G. B. Activation of C–H bonds by metal complexes. Chem. Rev. 1997, 97, 2879–2932.

[192]

Balaganesh, M.; Lawrence, S.; Christopher, C.; Bosco, A. J.; Kulangiappar, K.; Raj, K. J. S. Nitrate mediated oxidation of p-xylene by emulsion electrolysis. Electrochim. Acta 2013, 111, 384–389.

[193]

Bejan, D.; Lozar, J.; Falgayrac, G.; Savall, A. Electrochemical assistance of catalytic oxidation in liquid phase using molecular oxygen: Oxidation of toluenes. Catal. Today 1999, 48, 363–369.

[194]

Kärkäs, M. D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 2018, 47, 5786–5865.

[195]

Kawamata, Y.; Yan, M.; Liu, Z. Q.; Bao, D. H.; Chen, J. S.; Starr, J. T.; Baran, P. S. Scalable, electrochemical oxidation of unactivated C–H bonds. J. Am. Chem. Soc. 2017, 139, 7448–7451.

[196]
TomásR. A. F.BordadoJ. C. M.GomesJ. F. P. p-Xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and developmentChem. Rev.20131137421746910.1021/cr300298j

Tomás, R. A. F.; Bordado, J. C. M.; Gomes, J. F. P. p-Xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and development. Chem. Rev. 2013, 113, 7421–7469.

[197]

Attanayake, N. H.; Tang, M. Performance and pathways of electrochemical cyclohexane oxidation. Curr. Opin. Electrochem. 2021, 30, 100791.

[198]

Zhang, Y. J.; Yin, Z.; Hui, H. S.; Wang, H.; Li, Y. P.; Liu, G. H.; Kang, J. L.; Li, Z. H.; Mamba, B. B.; Li, J. X. Constructing defect-rich V2O5 nanorods in catalytic membrane electrode for highly efficient oxidation of cyclohexane. J. Catal. 2020, 387, 154–162.

[199]

Lum, Y.; Huang, J. E.; Wang, Z. Y.; Luo, M. C.; Nam, D. H.; Leow, W. R.; Chen, B.; Wicks, J.; Li, Y. C.; Wang, Y. H. et al. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nat. Catal. 2020, 3, 14–22.

[200]

Song, Y. F.; Zhao, Y. H.; Nan, G. Z.; Chen, W.; Guo, Z. K.; Li, S. G.; Tang, Z. Y.; Wei, W.; Sun, Y. H. Electrocatalytic oxidation of methane to ethanol via NiO/Ni interface. Appl. Catal. B: -Environ. 2020, 270, 118888.

Nano Research
Pages 1890-1912
Cite this article:
Lu Y, Zhou L, Wang S, et al. Defect engineering of electrocatalysts for organic synthesis. Nano Research, 2023, 16(2): 1890-1912. https://doi.org/10.1007/s12274-022-4858-5
Topics:

1120

Views

20

Crossref

20

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 07 July 2022
Revised: 25 July 2022
Accepted: 01 August 2022
Published: 21 September 2022
© Tsinghua University Press 2022
Return