Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Fe-porphyrin: A redox-related biosensor of hydrogen molecule

Zhaokui Jin1,2Penghe Zhao2Wanjun Gong2Wenjiang Ding1Qianjun He1,2()
Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066 Xueyuan Road, Shenzhen 518060, China
Show Author Information

Graphical Abstract

View original image Download original image
Fe-porphyrin is revealed to be a H2-targeted molecule playing a redox-related biosensor/biocatalyst of H2, which is recognized to be an upstream signaling molecule of CO by Fe-porphyrin-catalytic reduction of CO2 into CO in the hypoxic microenvironment.

Abstract

Hydrogen molecule (H2) exhibits broad-spectrum but microenvironment-dependent biomedical effects in varied oxidation stress-related diseases, but its molecular mechanism is unclear and its targeting molecule is unknown so far. Herein, we originally reveal that Fe-porphyrin is a H2-targeted molecule. We have demonstrated that the oxidized Fe-porphyrin in both free and protein-confining states can self-catalyze the hydrogenation/reduction by reacting with H2 to catalytically scavenge ∙OH, and can also catalytically hydrogenate to reduce CO2 into CO in the hypoxic microenvironment of in vitro simulation and in vivo tumor, confirming that Fe-porphyrin is a redox-related biosensor of H2 and H2 is an upstream signaling molecule of CO. These discoveries are favorable for deep understanding and exploration of profound biomedical effects of H2, and helpful for development of innovative drugs and hydrogen energy/agricultural materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4860_MOESM1_ESM.pdf (414.6 KB)

References

[1]

Dole, M.; Wilson, F. R.; Fife, W. P. Hyperbaric hydrogen therapy: A possible treatment for cancer. Science 1975, 190, 152–154.

[2]

Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K. I.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694.

[3]

Zheng, X. F.; Mao, Y. F.; Cai, J. M.; Li, Y. H.; Liu, W. W.; Sun, P. L.; Zhang, J. H.; Sun, X. J.; Yuan, H. B. Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radic. Res. 2009, 43, 478–484.

[4]

Wan, W. L.; Tian, B.; Lin, Y. J.; Korupalli, C.; Lu, M. Y.; Cui, Q. H.; Wan, D. H.; Chang, Y.; Sung, H. W. Photosynthesis-inspired H2 generation using a chlorophyll-loaded liposomal nanoplatform to detect and scavenge excess ROS. Nat. Commun. 2020, 11, 534.

[5]

Ichihara, M.; Sobue, S.; Ito, M.; Ito, M.; Hirayama, M.; Ohno, K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen-comprehensive review of 321 original articles-. Med. Gas. Res. 2015, 5, 12.

[6]

Zhou, G. X.; Goshi, E.; He, Q. J. Micro/nanomaterials-augmented hydrogen therapy. Adv. Healthcare Mater. 2019, 8, 1900463.

[7]

Gong, W. J.; Jiang, L. D.; Zhu, Y. X.; Jiang, M. N.; Chen, D. Y.; Jin, Z. K.; Qin, S. C.; Yu, Z. Q.; He, Q. J. An activity-based ratiometric fluorescent probe for in vivo real-time imaging of hydrogen molecules. Angew. Chem., Int. Ed. 2022, 61, e202114594.

[8]

Yao, X. X.; Chen, D. Y.; Zhao, B.; Yang, B. R.; Jin, Z. K.; Fan, M. J.; Tao, G. R.; Qin, S. C.; Yang, W. L.; He, Q. J. Acid-degradable hydrogen-generating metal-organic framework for overcoming cancer resistance/metastasis and off-target side effects. Adv. Sci. (Weinh.) 2022, 9, 2101965.

[9]

Zhao, B.; Wang, Y. S.; Yao, X. X.; Chen, D. Y.; Fan, M. J.; Jin, Z. K.; He, Q. J. Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst. Nat. Commun. 2021, 12, 1345.

[10]

Zhao, P. H.; Jin, Z. K.; Chen, Q.; Yang, T.; Chen, D. Y.; Meng, J.; Lu, X. F.; Gu, Z.; He, Q. J. Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun. 2018, 9, 4241.

[11]

Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148.

[12]

Motterlini, R.; Otterbein, L. E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743.

[13]

Szabo, C. Gasotransmitters in cancer: From pathophysiology to experimental therapy. Nat. Rev. Drug Discov. 2016, 15, 185–203.

[14]

Carbonero, F.; Benefiel, A. C.; Gaskins, H. R. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 504–518.

[15]

Ostojic, S. M. H2 alter mitochondrial bioenergetics via GHS-R1α activation? Theranostics 2017, 7, 1330–1332.

[16]

Needles, A.; Heinmiller, A.; Sun, J.; Theodoropoulos, C.; Bates, D.; Hirson, D.; Yin, M.; Foster, F. S. Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2013, 60, 888–897.

[17]

Xia, J.; Danielli, A.; Liu, Y.; Wang, L. D.; Maslov, K.; Wang, L. V. Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals. Opt. Lett. 2013, 38, 2800–2803.

Nano Research
Pages 2020-2025
Cite this article:
Jin Z, Zhao P, Gong W, et al. Fe-porphyrin: A redox-related biosensor of hydrogen molecule. Nano Research, 2023, 16(2): 2020-2025. https://doi.org/10.1007/s12274-022-4860-y
Topics:
Metrics & Citations  
Article History
Copyright
Return