AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-templating synthesis and structural regulation of nanoporous rhodium-nickel alloy nanowires efficiently catalyzing hydrogen evolution reaction in both acidic and alkaline electrolytes

Zhihua Zhai1Yan Wang2( )Conghui Si3Pan Liu4Wanfeng Yang1Guanhua Cheng1Zhonghua Zhang1( )
Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
Shanghai Key Laboratory of Advanced High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

A self-templating strategy was proposed to synthesize one-dimensional nanoporous RhNi alloy nanowires, which show excellent electrocatalytic activity and stability towards hydrogen evolution reaction in both acidic and alkaline media.

Abstract

Highly active and stable electrocatalysts to produce hydrogen through water splitting are crucial for clean energy systems but are still challenging. Herein, a novel self-templating strategy was proposed to synthesize one-dimensional nanoporous RhNi alloy nanowires through combining metallurgical eutectic solidification and microalloying with chemical dealloying. In-situ X-ray diffraction and ex-situ characterizations reveal that the Al matrix served as a template to guide the growth of the Al3(Ni, Rh) nanowires during eutectic solidification of Al-Ni-Rh precursor and was completely removed in the dealloying process. Meanwhile, the nanowire morphology could be well retained and the dealloying of Al3(Ni, Rh) led to the formation of nanoporous RhNi alloy nanowires. The length scale of the RhNi nanowires could be facilely regulated by changing the solidification conditions. More importantly, the RhNi catalysts show excellent electrocatalytic activity and stability towards hydrogen evolution reaction in both acidic and alkaline media, which has been rationalized by density functional theory calculations.

Electronic Supplementary Material

Download File(s)
12274_2022_4861_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Shi, H.; Zhou, Y. T.; Yao, R. Q.; Wan, W. B.; Ge, X.; Zhang, W.; Wen, Z.; Lang, X. Y.; Zheng, W. T.; Jiang, Q. Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nat. Commun. 2020, 11, 2940.

[2]

Wang, K.; Sun, K.; Yu, T.; Liu, X.; Wang, G.; Jiang, L.; Xie, G. Facile synthesis of nanoporous Ni–Fe–P bifunctional catalysts with high performance for overall water splitting. J. Mater. Chem. A 2019, 7, 2518–2523.

[3]

Lei, Q.; Wang, B.; Wang, P.; Liu, S. Hydrogen generation with acid/alkaline amphoteric water electrolysis. J. Energy Chem. 2019, 38, 162–169.

[4]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[5]

Joshi, U.; Malkhandi, S.; Ren, Y.; Tan, T. L.; Chiam, S. Y.; Yeo, B. S. Ruthenium-tungsten composite catalyst for the efficient and contamination-resistant electrochemical evolution of hydrogen. ACS Appl. Mater. Inter. 2018, 10, 6354–6360.

[6]

Yoon, D.; Seo, B.; Lee, J.; Nam, K. S.; Kim, B.; Park, S.; Baik, H.; Hoon Joo, S.; Lee, K. Facet-controlled hollow Rh2S3 hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy Environ. Sci. 2016, 9, 850–856.

[7]

Zhang, L.; Zhao, Z. -J.; Norouzi Banis, M.; Li, L.; Zhao, Y.; Song, Z.; Wang, Z.; Sham, T. -K.; Li, R.; Zheng, M. et al. Selective atomic layer deposition of RuOx catalysts on shape-controlled Pd nanocrystals with significantly enhanced hydrogen evolution activity. J. Mater. Chem. A 2018, 6, 24397–24406.

[8]

Geng, S.; Tian, F.; Li, M.; Liu, Y.; Sheng, J.; Yang, W.; Yu, Y.; Hou, Y. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

[9]

Wang, D.; Li, Q.; Han, C.; Xing, Z.; Yang, X. Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Appl. Catal. B: -Environ. 2019, 249, 91–97.

[10]

Bai, L.; Li, Y.; Zhao, J.; Bao, Y.; Ji, L.; Dai, J.; Shi, H.; Yang, F.; Zhang, X. Highly efficient utilization of precious metals for hydrogen evolution reaction with photo-assisted electro-deposited urchin-like Te nanostructure as a template. ChemCatChem 2019, 11, 2283–2287.

[11]

Palaniappan, R.; Botte, G. G. Effect of ammonia on Pt, Ru, Rh, and Ni cathodes during the alkaline hydrogen evolution reaction. J. Phys. Chem. C 2013, 117, 17429–17441.

[12]

Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. -P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170–180.

[13]

Xu, J.; Kong, X. Amorphous/crystalline heterophase ruthenium nanosheets for pH-universal hydrogen evolution. Small Methods 2022, 6, 2101432.

[14]

Zheng, J.; Sheng, W.; Zhuang, Z.; Xu, B.; Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2016, 2, 1501602.

[15]

Nguyen, N. -A.; Nguyen, V. -T.; Shin, S.; Choi, H. -S. NiRh nanosponges with highly efficient electrocatalytic performance for hydrogen evolution reaction. J. Alloys Compd. 2019, 789, 163–173.

[16]

Zhang, N.; Shao, Q.; Pi, Y.; Guo, J.; Huang, X. Solvent-mediated shape tuning of well-defined rhodium nanocrystals for efficient electrochemical water splitting. Chem. Mater. 2017, 29, 5009–5015.

[17]

Zhang, C.; Liu, H.; Liu, Y.; Liu, X.; Mi, Y.; Guo, R.; Sun, J.; Bao, H.; He, J.; Qiu, Y. et al. Rh2S3/N-doped carbon hybrids as pH-universal bifunctional electrocatalysts for energy-saving hydrogen evolution. Small Methods 2020, 4, 2000208.

[18]

Kim, T.; Park, J.; Jin, H.; Oh, A.; Baik, H.; Joo, S. H.; Lee, K. A facet-controlled Rh3Pb2S2 nanocage as an efficient and robust electrocatalyst toward the hydrogen evolution reaction. Nanoscale 2018, 10, 9845–9850.

[19]

Jiang, B.; Sun, Y.; Liao, F.; Shen, W.; Lin, H.; Wang, H.; Shao, M. Rh–Ag–Si ternary composites: Highly active hydrogen evolution electrocatalysts over Pt–Ag–Si. J. Mater. Chem. A 2017, 5, 1623–1628.

[20]

Zhang, L.; Lu, J.; Yin, S.; Luo, L.; Jing, S.; Brouzgou, A.; Chen, J.; Shen, P. K.; Tsiakaras, P. One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. Appl. Catal. B: -Environ. 2018, 230, 58–64.

[21]

Wang, P.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S.; Lu, G.; Yao, J.; Huang, X. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.

[22]

Kuttiyiel, K. A.; Sasaki, K.; Chen, W. -F.; Su, D.; Adzic, R. R. Core–shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. J. Mater. Chem. A 2014, 2, 591–594.

[23]

Cao, X.; Han, Y.; Gao, C.; Xu, Y.; Huang, X.; Willander, M.; Wang, N. Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy 2014, 9, 301–308.

[24]

Li, M.; Luo, M.; Xia, Z.; Yang, Y.; Huang, Y.; Wu, D.; Sun, Y.; Li, C.; Chao, Y.; Yang, W. et al. Modulating the surface segregation of PdCuRu nanocrystals for enhanced all-pH hydrogen evolution electrocatalysis. J. Mater. Chem. A 2019, 7, 20151–20157.

[25]

Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[26]

Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

[27]

Lei, L.; Huang, D.; Zhou, C.; Chen, S.; Yan, X.; Li, Z.; Wang, W. Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coordin. Chem. Rev. 2020, 408, 213177.

[28]

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

[29]

Rafailović, L. D.; Gammer, C.; Rentenberger, C.; Trišović, T.; Kleber, C.; Peter Karnthaler, H. Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition. Nano Energy 2013, 2, 523–529.

[30]

Hu, Z.; Yu, J. C. Pt3Co-loaded CdS and TiO2 for photocatalytic hydrogen evolution from water. J. Mater. Chem. A 2013, 1, 12221.

[31]

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

[32]

Yu, A.; Kim, S. Y.; Lee, C.; Kim, M. H.; Lee, Y. Boosted electron-transfer kinetics of hydrogen evolution reaction at bimetallic RhCo alloy nanotubes in acidic solution. ACS Appl. Mater. Inter. 2019, 11, 46886–46893.

[33]

Hu, M.; Ming, M.; Xu, C.; Wang, Y.; Zhang, Y.; Gao, D.; Bi, J.; Fan, G. Towards high-efficiency hydrogen production through in-situ formation of well-dispersed rhodium nanoclusters. ChemSusChem 2018, 11, 3253–3258.

[34]

Zhang, L.; Liu, L.; Wang, H.; Shen, H.; Cheng, Q.; Yan, C.; Park, S. Electrodeposition of rhodium nanowires arrays and their morphology-dependent hydrogen evolution activity. Nanomaterials 2017, 7, 103.

[35]

Yin, J.; Wang, J.; Ma, Y.; Yu, J.; Zhou, J.; Fan, Z. Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials. ACS Mater. Lett. 2020, 3, 121–133.

[36]

Zhu, C.; Du, D.; Eychmüller, A.; Lin, Y. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.

[37]

Cai, B.; Henning, S.; Herranz, J.; Schmidt, T. J.; Eychmüller, A. Nanostructuring noble metals as unsupported electrocatalysts for polymer electrolyte fuel cells. Adv. Energy Mater. 2017, 7, 1700548.

[38]

Zhu, C.; Guo, S.; Dong, S. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv. Mater. 2012, 24, 2326–2331.

[39]

Higgins, D. C.; Wang, R.; Hoque, M. A.; Zamani, P.; Abureden, S.; Chen, Z. Morphology and composition controlled platinum–cobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. Nano Energy 2014, 10, 135–143.

[40]

Bu, L.; Ding, J.; Guo, S.; Zhang, X.; Su, D.; Zhu, X.; Yao, J.; Guo, J.; Lu, G.; Huang, X. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.

[41]

Xu, Y.; Cui, X.; Wei, S.; Zhang, Q.; Gu, L.; Meng, F.; Fan, J.; Zheng, W. Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Res. 2019, 12, 1173–1179.

[42]

Huang, J.; Peng, B.; Stracensky, T.; Liu, Z.; Zhang, A.; Xu, M.; Liu, Y.; Zhao, Z.; Duan, X.; Jia, Q. et al. 1D PtCo nanowires as catalysts for PEMFCs with low Pt loading. Sci. China Mater. 2021, 65, 704–711.

[43]

Lee, E. P.; Peng, Z.; Chen, W.; Chen, S.; Yang, H.; Xia, Y. Electrocatalytic properties of Pt nanowires supported on Pt and W gauzes. ACS Nano 2008, 2, 2167–2173.

[44]

Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

[45]

Stratmann, M.; Rohwerder, M. A pore view of corrosion. Nature 2001, 410, 420–423.

[46]

Shui, J. -l.; Chen, C.; Li, J. C. M. Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction. Adv. Funct. Mater. 2011, 21, 3357–3362.

[47]

Liu, L.; Scholz, R.; Pippel, E.; Gösele, U. Microstructure, electrocatalytic and sensing properties of nanoporous Pt46Ni54 alloy nanowires fabricated by mild dealloying. J. Mater. Chem. 2010, 20, 5621–5627.

[48]

Luo, F.; Zhang, Y.; Wei, C.; Zhang, C.; Wang, J.; Zhang, Z. On the dealloying mechanisms of a rapidly solidified Al80Ag20 alloy using in-situ X-ray diffraction. Intermetallics 2020, 125, 106913.

[49]

Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non-Cryst. Solids 1995, 193, 222–229.

[50]

Kresse, G.; Furthmiiller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

[51]

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[52]

Zhang, Z.; Lu, Z. -H.; Tan, H.; Chen, X.; Yao, Q. CeOx-modified RhNi nanoparticles grown on rGO as highly efficient catalysts for complete hydrogen generation from hydrazine borane and hydrazine. J. Mater. Chem. A 2015, 3, 23520–23529.

[53]

Kang, Y.; Li, F.; Li, S.; Ji, P.; Zeng, J.; Jiang, J.; Chen, Y. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Res. 2016, 9, 3893–3902.

[54]

Park, S. -A.; Kim, K. -S.; Kim, Y. -T. Electrochemically activated iridium oxide black as promising electrocatalyst having high activity and stability for oxygen evolution reaction. ACS Energy Lett. 2018, 3, 1110–1115.

[55]

Zhu, L.; Lin, H.; Li, Y.; Liao, F.; Lifshitz, Y.; Sheng, M.; Lee, S. T.; Shao, M. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nat. Commun. 2016, 7, 12272.

[56]

Du, J.; Wang, X. L.; Li, C.; Liu, X. Y.; Gu, L.; Liang, H. P. Hollow Rh nanoparticles with nanoporous shell as efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2018, 282, 853–859.

[57]

Jiang, B.; Yang, L.; Liao, F.; Sheng, M.; Zhao, H.; Lin, H.; Shao, M. A stepwise-designed Rh-Au-Si nanocomposite that surpasses Pt/C hydrogen evolution activity at high overpotentials. Nano Res. 2017, 10, 1749–1755.

[58]

Smiljanic, M.; Rakocevic, Z.; Maksic, A.; Strbac, S. Hydrogen evolution reaction on platinum catalyzed by palladium and rhodium nanoislands. Electrochim. Acta 2014, 117, 336–343.

[59]

Bian, T.; Xiao, B.; Sun, B.; Huang, L.; Su, S.; Jiang, Y.; Xiao, J.; Yuan, A.; Zhang, H.; Yang, D. Local epitaxial growth of Au-Rh core–shell star-shaped decahedra: A case for studying electronic and ensemble effects in hydrogen evolution reaction. Appl. Catal. B: -Environ. 2020, 263, 118255.

[60]

Ji, Y.; Dong, H.; Liu, C.; Li, Y. Two-dimensional π-conjugated metal–organic nanosheets as single-atom catalysts for the hydrogen evolution reaction. Nanoscale 2019, 11, 454–458.

[61]

Pu, Z.; Amiinu, I. S.; He, D.; Wang, M.; Li, G.; Mu, S. Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction. Nanoscale 2018, 10, 12407–12412.

[62]

McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899.

[63]

Chen, M.; Smart, T. J.; Wang, S.; Kou, T.; Lin, D.; Ping, Y.; Li, Y. The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 8783–8812.

[64]

Mahmood, J.; Li, F.; Jung, S. -M.; Okyay, M. S.; Ahmad, I.; Kim, S. -J.; Park, N.; Jeong, H. Y.; Baek, J. -B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

[65]

Soldano, G.; Schulz, E. N.; Salinas, D. R.; Santos, E.; Schmickler, W. Hydrogen electrocatalysis on overlayers of rhodium over gold and palladium substrates-more active than platinum? Phys. Chem. Chem. Phys. 2011, 13, 16437–16443.

[66]

Si, C.; Yan, X.; Lu, Q.; Guo, E.; Luo, J.; Yang, Z.; Zhang, Z.; Chen, X. Coralloid-Pt nanodendrites decorated nanoporous gold films with exceptional ORR performance and ab initio DFT studies. Appl. Surf. Sci. 2022, 578, 152117.

[67]

Zhang, L. P.; Wu, P.; Sullivan, M. B. Hydrogen adsorption on Rh, Ni, and Pd functionalized single-walled boron nitride nanotubes. J. Phys. Chem. C 2011, 115, 4289–4296.

[68]

Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 2015, 54, 52–65.

[69]

Wei, Q.; Xiong, F.; Tan, S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300.

[70]

Wang, H.; Abruña, H. D. Rh and Rh alloy nanoparticles as highly active H2 oxidation catalysts for alkaline fuel cells. ACS Catal. 2019, 9, 5057–5062.

[71]

Arandiyan, H.; Wang, Y.; Scott, J.; Mesgari, S.; Dai, H.; Amal, R. In-situ exsolution of bimetallic Rh-Ni nanoalloys: A highly efficient catalyst for CO2 methanation. ACS Appl. Mater. Inter. 2018, 10, 16352–16357.

[72]

Jiang, K.; Zhao, D.; Guo, S.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 2017, 3, e1601705.

[73]

Choi, S. I.; Lee, S. U.; Kim, W. Y.; Choi, R.; Hong, K.; Nam, K. M.; Han, S. W.; Park, J. T. Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction. ACS Appl. Mater. Inter. 2012, 4, 6228–6234.

Nano Research
Pages 2026-2034
Cite this article:
Zhai Z, Wang Y, Si C, et al. Self-templating synthesis and structural regulation of nanoporous rhodium-nickel alloy nanowires efficiently catalyzing hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Research, 2023, 16(2): 2026-2034. https://doi.org/10.1007/s12274-022-4861-x
Topics:

943

Views

5

Crossref

5

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 14 April 2022
Revised: 29 July 2022
Accepted: 03 August 2022
Published: 12 September 2022
© Tsinghua University Press 2022
Return