Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrocatalytic nitrate reduction reaction (NO3−RR) emerges as a highly efficient approach toward ammonia synthesis and degrading NO3− contaminant. In our study, CeO2 nanoparticles with oxygen vacancies (VO) decorated N-doped carbon nanorods on graphite paper (CeO2−x@NC/GP) were demonstrated as a highly efficient NO3−RR electrocatalyst. The CeO2−x@NC/GP catalyst manifests a significant NH3 yield up to 712.75 μmol·h−1·cm−2 at −0.8 V vs. reversible hydrogen electrode (RHE) and remarkable Faradaic efficiency of 92.93% at −0.5 V vs. RHE under alkaline conditions, with excellent durability. Additionally, an assembled Zn-NO3− battery with CeO2−x@NC/GP as cathode accomplishes a high-power density of 3.44 mW·cm−2 and a large NH3 yield of 145.08 μmol·h−1·cm−2. Density functional theory results further expose the NO3− reduction mechanism on CeO2 (111) surface with VO.
Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.
Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.
Shen, P.; Li. X. C.; Luo, Y. J.; Guo, Y. L.; Zhao, X. L.; Chu, K. High-efficiency N2 electroreduction enabled by Se-vacancy-rich WSe2−x in water-in-salt electrolytes. ACS Nano 2022, 16, 7915–7925.
Chu, K.; Li, X. C.; Li, Q. Q.; Guo, Y. L.; Zhang, H. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 2021, 17, 2102363.
Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.
Zhang, S. B.; Zhao, C. J.; Liu, Y. Y.; Li, W. Y.; Wang, J. L.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance. Chem. Commun. 2019, 55, 2952–2955.
Chen, H. J.; Liang, J.; Dong, K.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Feng, Z. S.; Li, N.; Hamdy, M. S.; Alshehri, A. A. et al. Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes. Inorg. Chem. Front. 2022, 9, 1514–1519.
Wei, P. P.; Geng, Q.; Channa, A. I.; Tong, X.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Wang, Z. M.; Sun, X. P. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 2020, 13, 2967–2972.
Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612–2616.
Liu, Q.; Lin, Y. T.; Gu, S.; Cheng, Z. Q.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Alshehri, A. A.; Hamdy, M. S. et al. Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst. Nano Res. 2022, 15, 7134–7138.
Li, Y. B.; Liu, Y. P.; Wang, J.; Guo, Y. L.; Chu, K. Plasma-engineered NiO nanosheets with enriched oxygen vacancies for enhanced electrocatalytic nitrogen fixation. Inorg. Chem. Front. 2020, 7, 455–463.
Liu, C. C.; Li, S. X.; Li, Z. R.; Zhang, L. C.; Chen, H. J.; Zhao, D. L.; Sun, S. J.; Luo, Y. L.; Alshehri, A. A.; Hamdy, M. S. et al. Ambient N2-to-NH3 fixation over a CeO2 nanoparticle decorated three-dimensional carbon skeleton. Sustain. Energy Fuels 2022, 6, 3344–3348.
Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.
Bhatnagar, A.; Sillanpää, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504.
Song, P.; Huang, G. H.; Hong, Y. Y.; An, C. J.; Xin, X. Y.; Zhang, P. A biophysiological perspective on enhanced nitrate removal from decentralized domestic sewage using gravitational-flow multi-soil-layering systems. Chemosphere 2020, 240, 124868.
Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.
Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.
Li, Z. R.; Liang, J.; Liu, Q.; Xie, L. S.; Zhang, L. C.; Ren, Y. C.; Yue, L. C.; Li, N.; Tang, B.; Alshehri, A. A. et al. High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater. Today Phys. 2022, 23, 100619.
Zhao, Y. L.; Liu, Y.; Zhang, Z. J.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.
Liu, Q.; Xie, L. S.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 2022, 18, 2106961.
Guo, S. J.; Heck, K.; Kasiraju, S.; Qian, H. F.; Zhao, Z.; Grabow, L. C.; Miller, J. T.; Wong, M. S. Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts. ACS Catal. 2018, 8, 503–515.
Wang, Z. X.; Young, S. D.; Goldsmith, B. R.; Singh, N. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. J. Catal. 2021, 395, 143–154.
Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.
Chen, Q. Y.; Liang, J.; Liu, Q.; Dong, K.; Yue, L. C.; Wei, P. P.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B. et al. Co nanoparticle-decorated pomelo-peel-derived carbon enabled high-efficiency electrocatalytic nitrate reduction to ammonia. Chem. Commun. 2022, 58, 4259–4262.
Paier, J.; Penschke, C.; Sauer, J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 2013, 113, 3949–3985.
Campbell, C. T.; Peden, C. H. F. Oxygen vacancies and catalysis on ceria surfaces. Science 2005, 309, 713–714.
Li, C. C.; Wang, T.; Zhao, Z. J.; Yang, W. M.; Li, J. F.; Li, A.; Yang, Z. L.; Ozin, G. A.; Gong, J. L. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem., Int. Ed. 2018, 57, 5278–5282.
Xu, B.; Xia, L.; Zhou, F. L.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Zhou, Q.; Liu, Q.; Cui, G. W.; Xiong, X. L. et al. Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustainable Chem. Eng. 2019, 7, 2889–2893.
Zhang, L. C.; Liang, J.; Yue, L. C.; Xu, Z. Q.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res. 2022, 15, 304–309.
Yang, C. L.; Zhang, H. H.; Yu, K.; Xie, S. H.; Tong, H. N.; Song, Y.; Shi, G. S.; Gu, H. Y.; Chen, C.; Zhang, L. M. Stoichiometry-dependent oxygen evolution electrocatalysis on open-tubular nitrogen-doped carbon column supported transition metal oxides. ACS Appl. Energy Mater. 2020, 3, 2010–2019.
Kresse, G. Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Song, W. Y.; Wang, L.; Gao, Y.; Deng, J. L.; Jing, M. Z.; Zheng, H. L.; Liu, J.; Zhao, Z.; Gao, M. L.; Wei, Y. C. Unraveling the structure-sensitivity of the photocatalytic decomposition of N2O on CeO2: A DFT + U study. J. Mater. Chem. A 2018, 6, 19241–19255.
Wu, T. T.; López, N.; Vegge, T.; Hansen, H. A. Facet-dependent electrocatalytic water splitting reaction on CeO2: A DFT + U study. J. Catal. 2020, 388, 1–10.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
Fei, Z. Y.; Cheng, C.; Chen, H. W.; Li, L.; Yang, Y. R.; Liu, Q.; Chen, X.; Zhang, Z. X.; Tang, J. H.; Cui, M. F. et al. Construction of uniform nanodots CeO2 stabilized by porous silica matrix for 1, 2-dichloroethane catalytic combustion. Chem. Eng. J. 2019, 370, 916–924.
Wang, X. X.; Fu, K.; Wen, X. Y.; Qi, S. C.; Tong, G. X.; Wang, X. J.; Wu, W. H. Oxygen vacancy boosted microwave absorption in CeO2 hollow nanospheres. Appl. Surf. Sci. 2022, 598, 153826.
He, L.; Zhang, W. Y.; Liu, S.; Zhao, Y. Three-dimensional porous N-doped graphitic carbon framework with embedded CoO for photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2021, 298, 120546.
Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Shao, Y. R.; Zhang, L. X.; Li, Y. S.; Shi, J. L. Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chem. Eng. J. 2022, 427, 130987.
Schilling, C.; Hofmann, A.; Hess, C.; Ganduglia-Pirovano, M. V. Raman spectra of polycrystalline CeO2: A density functional theory study. J. Phys. Chem. C 2017, 121, 20834–20849.
Zhang, B. K.; Liu, J.; Shen, F. H. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: Density functional theory study. J. Phys. Chem. C 2015, 119, 15047–15055.
Liu, Y.; Wen, C.; Guo, Y.; Lu, G. Z.; Wang, Y. Q. Effects of surface area and oxygen vacancies on ceria in CO oxidation: Differences and relationships. J. Mol. Catal. A:Chem. 2010, 316, 59–64.
Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. :Condens. Matter 2009, 21, 084204.
Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908.
Guo, Y.; Zhang, R.; Zhang, S. C.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Dong, B. B.; Zhi, C. Y. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ. Sci. 2021, 14, 3938–3944.
Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.
Meng, G.; Wei, T. R.; Liu, W. J.; Li, W. B.; Zhang, S. S.; Liu, W. X.; Liu, Q.; Bao, H. H.; Luo, J.; Liu, X. J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun. 2022, 58, 8097–8100.
Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.
Zhang, X.; Wang, Y. T.; Wang, Y. B.; Guo, Y. M.; Xie, X. Y.; Yu, Y. F.; Zhang, B. Recent advances in electrocatalytic nitrite reduction. Chem. Commun. 2022, 58, 2777–2787.
Liu, Q.; Wen, G. L.; Zhao, D. L.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Alshehri, A. A.; Hamdy, M. S.; Kong, Q. Q. et al. Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. J. Colloid Interface Sci. 2022, 623, 513–519.