AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

CeO2 nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: A highly efficient catalyst for nitrate electroreduction to ammonia

Zerong Li1Zhiqin Deng2Ling Ouyang2Xiaoya Fan2Longcheng Zhang2Shengjun Sun2Qian Liu3Abdulmohsen Ali Alshehri4Yonglan Luo1( )Qingquan Kong3( )Xuping Sun2,5( )
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical engineering, China West Normal University, Nanchong 637002, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Show Author Information

Graphical Abstract

CeO2 nanoparticles with oxygen vacancies (VO) decorated N-doped carbon nanorods on graphite paper (CeO2−x@NC/GP) perform efficiently and stably for nitrate reduction electrocatalysis, achieving a remarkably high Faradic efficiency of 92.93% and a large ammonia yield of 712.75 μmol·h−1·cm−2 in 0.1 M NaOH with 0.1 M NO3.

Abstract

Electrocatalytic nitrate reduction reaction (NO3RR) emerges as a highly efficient approach toward ammonia synthesis and degrading NO3 contaminant. In our study, CeO2 nanoparticles with oxygen vacancies (VO) decorated N-doped carbon nanorods on graphite paper (CeO2−x@NC/GP) were demonstrated as a highly efficient NO3RR electrocatalyst. The CeO2−x@NC/GP catalyst manifests a significant NH3 yield up to 712.75 μmol·h−1·cm−2 at −0.8 V vs. reversible hydrogen electrode (RHE) and remarkable Faradaic efficiency of 92.93% at −0.5 V vs. RHE under alkaline conditions, with excellent durability. Additionally, an assembled Zn-NO3 battery with CeO2−x@NC/GP as cathode accomplishes a high-power density of 3.44 mW·cm−2 and a large NH3 yield of 145.08 μmol·h−1·cm−2. Density functional theory results further expose the NO3 reduction mechanism on CeO2 (111) surface with VO.

Electronic Supplementary Material

Download File(s)
12274_2022_4863_MOESM1_ESM.pdf (2.9 MB)

References

1
Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.
2
Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.
3
Dybkjaer, I. Ammonia production processes. In Ammonia, Catalysis and Manufacture; Nielsen, A., Ed.; Springer: Heidelberg, 1995; pp 199–327.
4

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

5

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

6

Shen, P.; Li. X. C.; Luo, Y. J.; Guo, Y. L.; Zhao, X. L.; Chu, K. High-efficiency N2 electroreduction enabled by Se-vacancy-rich WSe2−x in water-in-salt electrolytes. ACS Nano 2022, 16, 7915–7925.

7

Chu, K.; Li, X. C.; Li, Q. Q.; Guo, Y. L.; Zhang, H. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 2021, 17, 2102363.

8

Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.

9

Zhang, S. B.; Zhao, C. J.; Liu, Y. Y.; Li, W. Y.; Wang, J. L.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance. Chem. Commun. 2019, 55, 2952–2955.

10

Chen, H. J.; Liang, J.; Dong, K.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Feng, Z. S.; Li, N.; Hamdy, M. S.; Alshehri, A. A. et al. Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes. Inorg. Chem. Front. 2022, 9, 1514–1519.

11

Wei, P. P.; Geng, Q.; Channa, A. I.; Tong, X.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Wang, Z. M.; Sun, X. P. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 2020, 13, 2967–2972.

12

Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612–2616.

13

Liu, Q.; Lin, Y. T.; Gu, S.; Cheng, Z. Q.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Alshehri, A. A.; Hamdy, M. S. et al. Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst. Nano Res. 2022, 15, 7134–7138.

14

Li, Y. B.; Liu, Y. P.; Wang, J.; Guo, Y. L.; Chu, K. Plasma-engineered NiO nanosheets with enriched oxygen vacancies for enhanced electrocatalytic nitrogen fixation. Inorg. Chem. Front. 2020, 7, 455–463.

15

Liu, C. C.; Li, S. X.; Li, Z. R.; Zhang, L. C.; Chen, H. J.; Zhao, D. L.; Sun, S. J.; Luo, Y. L.; Alshehri, A. A.; Hamdy, M. S. et al. Ambient N2-to-NH3 fixation over a CeO2 nanoparticle decorated three-dimensional carbon skeleton. Sustain. Energy Fuels 2022, 6, 3344–3348.

16

Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

17
Chen, H. J.; Xu, Z. Q.; Sun, S. J.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Feng, Z. S.; Sun, X. P.; Wang, Y. Plasma-etched Ti2O3 with oxygen vacancies for enhanced NH3 electrosynthesis and Zn-N2 battery. Inorg. Chem. Front., in press, https://doi.org/10.1039/D2QI01173E.
18

Bhatnagar, A.; Sillanpää, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504.

19

Song, P.; Huang, G. H.; Hong, Y. Y.; An, C. J.; Xin, X. Y.; Zhang, P. A biophysiological perspective on enhanced nitrate removal from decentralized domestic sewage using gravitational-flow multi-soil-layering systems. Chemosphere 2020, 240, 124868.

20

Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.

21

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

22

Li, Z. R.; Liang, J.; Liu, Q.; Xie, L. S.; Zhang, L. C.; Ren, Y. C.; Yue, L. C.; Li, N.; Tang, B.; Alshehri, A. A. et al. High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater. Today Phys. 2022, 23, 100619.

23

Zhao, Y. L.; Liu, Y.; Zhang, Z. J.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.

24

Liu, Q.; Xie, L. S.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 2022, 18, 2106961.

25

Guo, S. J.; Heck, K.; Kasiraju, S.; Qian, H. F.; Zhao, Z.; Grabow, L. C.; Miller, J. T.; Wong, M. S. Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts. ACS Catal. 2018, 8, 503–515.

26

Wang, Z. X.; Young, S. D.; Goldsmith, B. R.; Singh, N. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. J. Catal. 2021, 395, 143–154.

27

Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.

28

Chen, Q. Y.; Liang, J.; Liu, Q.; Dong, K.; Yue, L. C.; Wei, P. P.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B. et al. Co nanoparticle-decorated pomelo-peel-derived carbon enabled high-efficiency electrocatalytic nitrate reduction to ammonia. Chem. Commun. 2022, 58, 4259–4262.

29

Paier, J.; Penschke, C.; Sauer, J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 2013, 113, 3949–3985.

30

Campbell, C. T.; Peden, C. H. F. Oxygen vacancies and catalysis on ceria surfaces. Science 2005, 309, 713–714.

31

Li, C. C.; Wang, T.; Zhao, Z. J.; Yang, W. M.; Li, J. F.; Li, A.; Yang, Z. L.; Ozin, G. A.; Gong, J. L. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem., Int. Ed. 2018, 57, 5278–5282.

32

Xu, B.; Xia, L.; Zhou, F. L.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Zhou, Q.; Liu, Q.; Cui, G. W.; Xiong, X. L. et al. Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustainable Chem. Eng. 2019, 7, 2889–2893.

33

Zhang, L. C.; Liang, J.; Yue, L. C.; Xu, Z. Q.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res. 2022, 15, 304–309.

34

Yang, C. L.; Zhang, H. H.; Yu, K.; Xie, S. H.; Tong, H. N.; Song, Y.; Shi, G. S.; Gu, H. Y.; Chen, C.; Zhang, L. M. Stoichiometry-dependent oxygen evolution electrocatalysis on open-tubular nitrogen-doped carbon column supported transition metal oxides. ACS Appl. Energy Mater. 2020, 3, 2010–2019.

35

Kresse, G. Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

36

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

37

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

38

Song, W. Y.; Wang, L.; Gao, Y.; Deng, J. L.; Jing, M. Z.; Zheng, H. L.; Liu, J.; Zhao, Z.; Gao, M. L.; Wei, Y. C. Unraveling the structure-sensitivity of the photocatalytic decomposition of N2O on CeO2: A DFT + U study. J. Mater. Chem. A 2018, 6, 19241–19255.

39

Wu, T. T.; López, N.; Vegge, T.; Hansen, H. A. Facet-dependent electrocatalytic water splitting reaction on CeO2: A DFT + U study. J. Catal. 2020, 388, 1–10.

40

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

41

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

42

Fei, Z. Y.; Cheng, C.; Chen, H. W.; Li, L.; Yang, Y. R.; Liu, Q.; Chen, X.; Zhang, Z. X.; Tang, J. H.; Cui, M. F. et al. Construction of uniform nanodots CeO2 stabilized by porous silica matrix for 1, 2-dichloroethane catalytic combustion. Chem. Eng. J. 2019, 370, 916–924.

43

Wang, X. X.; Fu, K.; Wen, X. Y.; Qi, S. C.; Tong, G. X.; Wang, X. J.; Wu, W. H. Oxygen vacancy boosted microwave absorption in CeO2 hollow nanospheres. Appl. Surf. Sci. 2022, 598, 153826.

44

He, L.; Zhang, W. Y.; Liu, S.; Zhao, Y. Three-dimensional porous N-doped graphitic carbon framework with embedded CoO for photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2021, 298, 120546.

45

Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Shao, Y. R.; Zhang, L. X.; Li, Y. S.; Shi, J. L. Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chem. Eng. J. 2022, 427, 130987.

46

Schilling, C.; Hofmann, A.; Hess, C.; Ganduglia-Pirovano, M. V. Raman spectra of polycrystalline CeO2: A density functional theory study. J. Phys. Chem. C 2017, 121, 20834–20849.

47

Zhang, B. K.; Liu, J.; Shen, F. H. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: Density functional theory study. J. Phys. Chem. C 2015, 119, 15047–15055.

48

Liu, Y.; Wen, C.; Guo, Y.; Lu, G. Z.; Wang, Y. Q. Effects of surface area and oxygen vacancies on ceria in CO oxidation: Differences and relationships. J. Mol. Catal. A:Chem. 2010, 316, 59–64.

49

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. :Condens. Matter 2009, 21, 084204.

50

Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908.

51

Guo, Y.; Zhang, R.; Zhang, S. C.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Dong, B. B.; Zhi, C. Y. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ. Sci. 2021, 14, 3938–3944.

52

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

53

Meng, G.; Wei, T. R.; Liu, W. J.; Li, W. B.; Zhang, S. S.; Liu, W. X.; Liu, Q.; Bao, H. H.; Luo, J.; Liu, X. J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun. 2022, 58, 8097–8100.

54

Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.

55
Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience, in press, https://doi.org/10.1016/j.esci.2022.04.008.
56

Zhang, X.; Wang, Y. T.; Wang, Y. B.; Guo, Y. M.; Xie, X. Y.; Yu, Y. F.; Zhang, B. Recent advances in electrocatalytic nitrite reduction. Chem. Commun. 2022, 58, 2777–2787.

57

Liu, Q.; Wen, G. L.; Zhao, D. L.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Alshehri, A. A.; Hamdy, M. S.; Kong, Q. Q. et al. Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. J. Colloid Interface Sci. 2022, 623, 513–519.

Nano Research
Pages 8914-8921
Cite this article:
Li Z, Deng Z, Ouyang L, et al. CeO2 nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: A highly efficient catalyst for nitrate electroreduction to ammonia. Nano Research, 2022, 15(10): 8914-8921. https://doi.org/10.1007/s12274-022-4863-8
Topics:

1128

Views

58

Crossref

54

Web of Science

52

Scopus

5

CSCD

Altmetrics

Received: 08 July 2022
Revised: 30 July 2022
Accepted: 04 August 2022
Published: 17 August 2022
© Tsinghua University Press 2022
Return