Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Designing catalyst to achieve ammonia synthesis at mild conditions is a meaningful challenge in catalysis community. Defective g-C3N4 nanosheet supported single-cluster ruthenium and iron catalysts were investigated for their ammonia synthesis performance. Based on density functional theory (DFT) calculations and microkinetic simulations, Ru3 single-cluster anchored on defective g-C3N4 nanosheet (Ru3/Nv-g-C3N4) has a turnover frequency (TOF) 5.8 times higher than the Ru(0001) step surface at industrial reaction conditions of 673 K and 100 bar for ammonia synthesis. In other words, similar TOFs could be achieved on Ru3/Nv-g-C3N4 at much milder conditions (623 K, 30 bar) than on Ru(0001) (673 K, 100 bar). Our computations reveal the reaction proceeds parallelly on Ru3/Nv-g-C3N4 through both dissociative and alternative associative mechanisms at typical reaction conditions (600–700 K, 10–100 bar); N–N bond cleavage of *N2 and *NNH from the two respective pathways controls the reaction collectively. With increasing temperatures or decreasing pressures, the dissociative mechanism gradually prevails and associative mechanism recedes. In comparison, Fe3/Nv-g-C3N4 catalyst shows a much lower catalytic activity than Ru3/Nv-g-C3N4 by two orders of magnitude and the reaction occurs solely through the dissociative pathway. The finding provides a prospective candidate and deepens the mechanistic understanding for ammonia synthesis catalyzed by single-cluster catalysts (SCCs).
Pfromm, P. H. Towards sustainable agriculture: Fossil-free ammonia. J. Renew. Sustainable Energy 2017, 9, 034702.
Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.
Schlögl, R. Catalytic synthesis of ammonia-a “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.
Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W. I. F.; Bowen, P. J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102.
van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.
Zeinalipour-Yazdi, C. D.; Hargreaves, J. S. J.; Laassiri, S.; Catlow, C. R. A. A comparative analysis of the mechanisms of ammonia synthesis on various catalysts using density functional theory. Roy. Soc. Open Sci. 2021, 8, 210952.
Shi, L.; Yin, Y.; Wang, S. B.; Sun, H. Q. Rational catalyst design for N2 reduction under ambient conditions: Strategies toward enhanced conversion efficiency. ACS Catal. 2020, 10, 6870–6899.
Mao, C. L.; Wang, J. X.; Zou, Y. J.; Qi, G. D.; Loh, J. Y. Y.; Zhang, T. H.; Xia, M. K.; Xu, J.; Deng, F.; Ghoussoub, M. et al. Hydrogen spillover to oxygen vacancy of TIO2−xhy/Fe: Breaking the scaling relationship of ammonia synthesis. J. Am. Chem. Soc. 2020, 142, 17403–17412.
Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T. R.; Moses, P. G.; Skúlason, E.; Bligaard, T.; Nørskov, J. K. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 2007, 99, 016105.
Munter, T. R.; Bligaard, T.; Christensen, C. H.; Nørskov, J. K. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces. Phys. Chem. Chem. Phys. 2008, 10, 5202–5206.
Wang, S.; Petzold, V.; Tripkovic, V.; Kleis, J.; Howalt, J. G.; Skúlason, E.; Fernández, E. M.; Hvolbaek, B.; Jones, G.; Toftelund, A. et al. Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys. Chem. Chem. Phys. 2011, 13, 20760–20765.
Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.
Zhang, Y. N.; Li, S.; Sun, C.; Wang, P.; Yang, Y. J.; Yi, D.; Wang, X.; Yao, J. N. Understanding and modifying the scaling relations for ammonia synthesis on dilute metal alloys: From single-atom alloys to dimer alloys. ACS Catal. 2022, 12, 9201–9212.
Wang, P. K.; Chang, F.; Gao, W. B.; Guo, J. P.; Wu, G. T.; He, T.; Chen, P. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64–70.
Chang, F.; Guan, Y. Q.; Chang, X. H.; Guo, J. P.; Wang, P. K.; Gao, W. B.; Wu, G. T.; Zheng, J.; Li, X. G.; Chen, P. Alkali and alkaline earth hydrides-driven N2 activation and transformation over Mn nitride catalyst. J. Am. Chem. Soc. 2018, 140, 14799–14806.
Wang, Q. R.; Pan, J.; Guo, J. P.; Hansen, H. A.; Xie, H.; Jiang, L.; Hua, L.; Li, H. Y.; Guan, Y. Q.; Wang, P. K. et al. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 2021, 4, 959–967.
Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Tada, T.; Hosono, H. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 2020, 583, 391–395.
Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Hosono, H. Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts. J. Am. Chem. Soc. 2020, 142, 14374–14383.
Yao, Y.; Zhu, S. Q.; Wang, H. J.; Li, H.; Shao, M. H. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 2018, 140, 1496–1501.
Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.
Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.
Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.
Ma, X. L.; Liu, J. C.; Xiao, H.; Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 2018, 140, 46–49.
Ma, X. L.; Yang, Y.; Xu, L. M.; Xiao, H.; Yao, W. Z.; Li, J. Theoretical investigation on hydrogenation of dinitrogen triggered by singly dispersed bimetallic sites. J. Mater. Chem. A 2022, 10, 6146–6152.
Zhu, H. D.; Aarons, J.; Peng, Q. High spin polarized Fe2 cluster combined with vicinal nonmetallic sites for catalytic ammonia synthesis from a theoretical perspective. Inorg. Chem. Front. 2021, 8, 5299–5311.
Li, D. Z.; Liu, Y.; Liu, Z.; Yang, J.; Hu, C. Q.; Feng, L. G. Electrochemical hydrogen evolution reaction efficiently catalyzed by Ru-N coupling in defect-rich Ru/g-C3N4 nanosheets. J. Mater. Chem. A 2021, 9, 15019–15026.
Tian, S. B.; Fu, Q.; Chen, W. X.; Feng, Q. C.; Chen, Z.; Zhang, J.; Cheong, W. C.; Yu, R.; Gu, L.; Dong, J. C. et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 2018, 9, 2353.
Zhao, Z. M.; Long, Y.; Luo, S.; Luo, Y. T.; Chen, M.; Ma, J. T. Metal-Free C3N4 with plentiful nitrogen vacancy and increased specific surface area for electrocatalytic nitrogen reduction. J. Energy Chem. 2021, 60, 546–555.
An, S. F.; Zhang, G. H.; Wang, T. W.; Zhang, W. N.; Li, K. Y.; Song, C. S.; Miller, J. T.; Miao, S.; Wang, J. H.; Guo, X. W. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 2018, 12, 9441–9450.
Oh, W. D.; Chang, V. W. C.; Hu, Z. T.; Goei, R.; Lim, T. T. Enhancing the catalytic activity of g-C3N4 through Me doping (Me = Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process. Chem. Eng. J. 2017, 323, 260–269.
Kong, N. N.; Fan, X.; Liu, F. F.; Wang, L.; Lin, H. P.; Li, Y. Y.; Lee, S. T. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation. ACS Nano 2020, 14, 5772–5779.
Lv, L.; Shen, Y. Q.; Liu, J. J.; Meng, X. H.; Gao, X.; Zhou, M.; Zhang, Y.; Gong, D. W.; Zheng, Y. D.; Zhou, Z. X. Computational screening of high activity and selectivity TM/g-C3N4 single-atom catalysts for electrocatalytic reduction of nitrates to ammonia. J. Phys. Chem. Lett. 2021, 12, 11143–11150.
Yang, L.; Feng, S. H.; Zhu, W. H. Tuning nitrate electroreduction activity via an equilibrium adsorption strategy: A computational study. J. Phys. Chem. Lett. 2022, 13, 1726–1733.
Roongcharoen, T.; Impeng, S.; Chitpakdee, C.; Rungrotmongkol, T.; Jitwatanasirikul, T.; Jungsuttiwong, S.; Namuangruk, S. Intrinsic property and catalytic performance of single and double metal atoms incorporated g-C3N4 for O2 activation: A DFT insight. Appl. Surf. Sci. 2021, 541, 148671.
Yang, N. T.; Zhao, Y. H.; Wu, P.; Liu, G. J.; Sun, F. F.; Ma, J. Y.; Jiang, Z.; Sun, Y. H.; Zeng, G. F. Defective C3N4 frameworks coordinated diatomic copper catalyst: Towards mild oxidation of methane to C1 oxygenates. Appl. Catal. B 2021, 299, 120682.
Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795–9798.
Li, L. L.; Jiang, Y. F.; Zhang, T. H.; Cai, H. F.; Zhou, Y. L.; Lin, B. Y.; Lin, X. Y.; Zheng, Y.; Zheng, L. R.; Wang, X. Y. et al. Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters. Chem 2022, 8, 749–768.
Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew−Burke−Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Hjorth Larsen, A.; JøMortensen, J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dulak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C. et al. The atomic simulation environment—A Python library for working with atoms. J. Phys. Condens. Matter 2017, 29, 273002.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Wang, W.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
Medford, A. J.; Shi, C.; Hoffmann, M. J.; Lausche, A. C.; Fitzgibbon, S. R.; Bligaard, T.; Nørskov, J. K. CatMAP: A software package for descriptor-based microkinetic mapping of catalytic trends. Catal. Lett. 2015, 145, 794–807.
Wu, H. Z.; Bandaru, S.; Liu, J.; Li, L. L.; Wang, Z. L. Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory. Appl. Surf. Sci. 2018, 430, 125–136.