AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancement of electrical conductivity and electromagnetic interference shielding performance via supercritical CO2 induced phase coarsening for double percolated polymer blends

Fangfang ZouXia Liao( )Pengwei SongShaozhe ShiJia ChenXiaohan WangGuangxian Li
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
Show Author Information

Graphical Abstract

Double percolated polylactide acid (PLA)/polystyrene (PS)/multi-wall carbon nanotube (MWCNT) composites annealed in supercritical carbon dioxide (scCO2), realized obvious coarsening of conductive network due to effective plasticization effect of CO2, which benefited the improvement of the electrical conductivity and electromagnetic interference (EMI) shielding performance.

Abstract

The electrical conductivity of conductive polymer composites (CPCs) with a classical double percolated structure is highly connected to the phase morphology. However, lots of conductive fillers, which are added to guarantee CPCs’ electrical conductivity, caused increased viscosity and limited phase coarsening in traditional atmosphere annealing. Herein, a novel processing method of supercritical carbon dioxide (scCO2), assisted phase coarsening for polylactide acid (PLA)/polystyrene (PS)/multi-wall carbon nanotube (MWCNT) composites was explored. It was first proved that obviously coarsened conductive network of double percolation after scCO2 annealing was achieved, which benefited from CO2 plasticized polymer chains and thus decreased viscosity. Therefore, the electrical properties and electromagnetic interference (EMI) shielding performance of the composites were significantly improved. The percolation threshold of PLA/PS/MWCNT composites decreased from 0.31 wt.% to 0.16 wt.%, and EMI shielding effectiveness increased from 32.8 to 37.4 dB at 5 wt.% MWCNT loading. This work provides a simple, green, and effective way of post-processing to tailor the phase structure via varying conditions of annealing medium such as temperature, CO2 pressure, and time, and gains CPCs with improved electrical conductivity and EMI shielding performance.

Electronic Supplementary Material

Download File(s)
12274_2022_4867_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhang, Y.; Liang, X. W.; Sun, R.; Wong, C. P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res. 2018, 11, 1938–1955.

[2]

Salaeh, S.; Das, A.; Stöckelhuber, K. W.; Wießner, S. Fabrication of a strain sensor from a thermoplastic vulcanizate with an embedded interconnected conducting filler network. Compos. Part A Appl. Sci. Manuf. 2020, 130, 105763.

[3]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

[4]

Han, S.; Jung, S.; Jeong, S.; Choi, J.; Choi, Y.; Lee, S. Y. High-performance, biaxially stretchable conductor based on Ag composites and hierarchical auxetic structure. J. Mater. Chem. C 2020, 8, 1556–1561.

[5]

Zhang, Q. Y.; Zhang, B. Y.; Guo, B. H.; Guo, Z. X.; Yu, J. High-temperature polymer conductors with self-assembled conductive pathways. Compos. Part B Eng. 2020, 192, 107989.

[6]

Zhu, H. W.; Gao, H. L.; Zhao, H. Y.; Ge, J.; Hu, B. C.; Huang, J.; Yu, S. H. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Res. 2020, 13, 2879–2884.

[7]

Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

[8]

Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

[9]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[10]

Wu, N. N.; Hu, Q.; Wei, R. B.; Mai, X. M.; Naik, N.; Pan, D.; Guo, Z. H.; Shi, Z. J. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon 2021, 176, 88–105.

[11]

Sankaran, S.; Deshmukh, K.; Ahamed, M. B.; Pasha, S. K. K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part A:Appl. Sci. Manuf. 2018, 114, 49–71.

[12]

Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Hudec, I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 2021, 3, 123–172.

[13]

Zhai, Y.; Yu, Y. F.; Zhou, K. K.; Yun, Z. G.; Huang, W. J.; Liu, H.; Xia, Q. J.; Dai, K.; Zheng, G. Q.; Liu, C. T. et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors. Chem. Eng. J. 2020, 382, 122985.

[14]

Chen, Y.; Wang, L.; Wu, Z. F.; Luo, J. C.; Li, B.; Huang, X. W.; Xue, H. G.; Gao, J. F. Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors. Compos. Part B: Eng. 2019, 176, 107358.

[15]

Xiao, W.; Liao, X.; Jiang, Q. Y.; Zhang, Y.; Chen, J.; Yang, Q.; Li, G. X. Strategy to enhance conductivity of polystyrene/graphene composite foams via supercritical carbon dioxide foaming process. J. Supercrit. Fluids 2018, 142, 52–63.

[16]

Jiang, Q. Y.; Liao, X.; Li, J. S.; Chen, J.; Wang, G.; Yi, J.; Yang, Q.; Li, G. X. Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos. Part A: Appl. Sci. Manuf. 2019, 123, 310–319.

[17]

Wang, G.; Liao, X.; Yang, J. M.; Tang, W. Y.; Zhang, Y.; Jiang, Q. Y.; Li, G. X. Frequency-selective and tunable electromagnetic shielding effectiveness via the sandwich structure of silicone rubber/graphene composite. Compos. Sci. Technol. 2019, 184, 107847.

[18]

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

[19]

Postiglione, G.; Natale, G.; Griffini, G.; Levi, M.; Turri, S. Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos. Part A: Appl. Sci. Manuf. 2015, 76, 110–114.

[20]

Zhang, K.; Li, G. H.; Feng, L. M.; Wang, N.; Guo, J.; Sun, K.; Yu, K. X.; Zeng, J. B.; Li, T. X.; Guo, Z. H. et al. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J. Mater. Chem. C 2017, 5, 9359–9369.

[21]

Yang, J. M.; Liao, X.; Li, J. S.; He, G. J.; Zhang, Y.; Tang, W. Y.; Wang, G.; Li, G. X. Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption. Compos. Sci. Technol. 2019, 181, 107670.

[22]

Yang, J. M.; Liao, X.; Wang, G.; Chen, J.; Tang, W. Y.; Wang, T. F.; Li, G. X. Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity. J. Mater. Chem. C 2020, 8, 147–157.

[23]

Al-Saleh, M. H.; Sundararaj, U. A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 2009, 47, 2–22.

[24]

Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 2012, 50, 5126–5134.

[25]

Yang, J. M.; Liao, X.; Wang, G.; Chen, J.; Guo, F. M.; Tang, W. Y.; Wang, W.; Yan, Z. H.; Li, G. X. Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chem. Eng. J. 2020, 390, 124589.

[26]

Chen, J.; Liao, X.; Li, S. J.; Wang, W.; Guo, F. M.; Li, G. X. A promising strategy for efficient electromagnetic interference shielding by designing a porous double-percolated structure in MWCNT/polymer-based composites. Compos. Part A: Appl. Sci. Manuf. 2020, 138, 106059.

[27]

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

[28]

Yang, J. M.; Liao, X.; Wang, G.; Chen, J.; Song, P. W.; Tang, W. Y.; Guo, F. M.; Liu, F.; Li, G. X. Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding. Compos. Sci. Technol. 2021, 206, 108663.

[29]

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

[30]

Chen, J.; Liao, X.; Xiao, W.; Yang, J. M.; Jiang, Q. Y.; Li, G. X. Facile and green method to structure ultralow-threshold and lightweight polystyrene/mwcnt composites with segregated conductive networks for efficient electromagnetic interference shielding. ACS Sustainable Chem. Eng. 2019, 7, 9904–9915.

[31]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

[32]

Chen, J. W.; Cui, X. H.; Zhu, Y. T.; Jiang, W.; Sui, K. Y. Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π–π interactions and dipole–dipole interactions. Carbon 2017, 114, 441–448.

[33]

Yang, Y.; Feng, C. P.; Zhou, Y. C.; Zha, X. J.; Bao, R. Y.; Ke, K.; Yang, M. B.; Tan, C. B.; Yang, W. Achieving improved electromagnetic interference shielding performance and balanced mechanical properties in polyketone nanocomposites via a composite MWCNTs carrier. Compos. Part A: Appl. Sci. Manuf. 2020, 136, 105967.

[34]

Dil, E. J.; Arjmand, M.; Navas, I. O.; Sundararaj, U.; Favis, B. D. Interface bridging of multiwalled carbon nanotubes in polylactic acid/poly(butylene adipate-co-terephthalate): Morphology, rheology, and electrical conductivity. Macromolecules 2020, 53, 10267–10277.

[35]

Guo, M. L.; Kashfipour, M. A.; Li, Y. F.; Dent, R. S.; Zhu, J. H.; Maia, J. M. Structure-rheology-property relationships in double-percolated polypropylene/poly(methyl methacrylate)/boron nitride polymer composites. Compos. Sci. Technol. 2020, 198, 108306.

[36]

Sharika, T.; Abraham, J.; Arif P, M.; George, S. C.; Kalarikkal, N.; Thomas, S. Excellent electromagnetic shield derived from MWCNT reinforced NR/PP blend nanocomposites with tailored microstructural properties. Compos. Part B: Eng. 2019, 173, 106798.

[37]

Liu, Y. F.; He, H. Z.; Tian, G. D.; Wang, Y.; Gao, J.; Wang, C.; Xu, L.; Zhang, H. Morphology evolution to form double percolation polylactide/polycaprolactone/MWCNTs nanocomposites with ultralow percolation threshold and excellent EMI shielding. Compos. Sci. Technol. 2021, 214, 108956.

[38]

Xu, Z. H.; Zhang, Y. Q.; Wang, Z. G.; Sun, N.; Li, H. Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(ε-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes. ACS Appl. Mater. Interfaces 2011, 3, 4858–4864.

[39]

Tan, Y. J.; Li, J.; Tang, X. H.; Yue, T. N.; Wang, M. Effect of phase morphology and distribution of multi-walled carbon nanotubes on microwave shielding of poly(L-lactide)/poly(ε-caprolactone) composites. Compos. Part A: Appl. Sci. Manuf. 2020, 137, 106008.

[40]

Takayama, T.; Todo, M.; Tsuji, H. Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends. J. Mech. Behav. Biomed. Mater. 2011, 4, 255–260.

[41]

Sun, X. R.; Gong, T.; Pu, J. H.; Bao, R. Y.; Xie, B. H.; Yang, M. B.; Yang, W. Effect of phase coarsening under melt annealing on the electrical performance of polymer composites with a double percolation structure. Phys. Chem. Chem. Phys. 2018, 20, 137–147.

[42]

Zeng, S. P.; Li, X. P.; Li, M. J.; Zheng, J. J.; E, S. J.; Yang, W. J.; Zhao, B.; Guo, X. Q.; Zhang, R. Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon 2019, 155, 34–43.

[43]

Zhang, X.; Wada, T.; Chammingkwan, P.; Thakur, A.; Taniike, T. Cooperative influences of nanoparticle localization and phase coarsening on thermal conductivity of polypropylene/polyolefin elastomer blends. Compos. Part A: Appl. Sci. Manuf. 2019, 126, 105602.

[44]

Cipriano, B. H.; Kota, A. K.; Gershon, A. L.; Laskowski, C. J.; Kashiwagi, T.; Bruck, H. A.; Raghavan, S. R. Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 2008, 49, 4846–4851.

[45]

Zhang, H. X.; Chen, J. W.; Cui, X. H.; Hu, Y. X.; Lei, L. C.; Zhu, Y. T.; Jiang, W. Thermal annealing induced enhancement of electrical properties of a co-continuous polymer blend filled with carbon nanotubes. Compos. Sci. Technol. 2018, 167, 522–528.

[46]

Liu, X. Q.; Li, R. H.; Bao, R. Y.; Jiang, W. R.; Yang, W.; Xie, B. H.; Yang, M. B. Suppression of phase coarsening in immiscible, co-continuous polymer blends under high temperature quiescent annealing. Soft Matter 2014, 10, 3587–3596.

[47]

Huang, S. J.; Bai, L.; Trifkovic, M.; Cheng, X.; Macosko, C. W. Controlling the morphology of immiscible cocontinuous polymer blends via silica nanoparticles jammed at the interface. Macromolecules 2016, 49, 3911–3918.

[48]

Feng, J. M.; Liu, X. Q.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Suppressing phase coarsening in immiscible polymer blends using nano-silica particles located at the interface. RSC Adv. 2015, 5, 74295–74303.

[49]

Trifkovic, M.; Hedegaard, A. T.; Sheikhzadeh, M.; Huang, S. J.; Macosko, C. W. Stabilization of PE/PEO cocontinuous blends by interfacial nanoclays. Macromolecules 2015, 48, 4631–4644.

[50]

Wang, C. D.; Shaayegan, V.; Costa, F.; Han, S.; Park, C. B. The critical requirement for high-pressure foam injection molding with supercritical fluid. Polymer 2022, 238, 124388.

[51]

Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.

[52]

Huang, E. B.; Liao, X.; Zhao, C. X.; Park, C. B.; Yang, Q.; Li, G. X. Effect of unexpected CO2’s phase transition on the high-pressure differential scanning calorimetry performance of various polymers. ACS Sustainable Chem. Eng. 2016, 4, 1810–1818.

[53]

Huang, E. B.; Liao, X.; He, Y. C.; He, B.; Yang, Q.; Li, G. X. A novel route to the generation of porous scaffold based on the phase morphology control of co-continuous poly(ε-caprolactone)/polylactide blend in supercritical CO2. Polymer 2017, 118, 163–172.

[54]

Ye, J. G.; Liao, X.; Xiao, W.; Li, S. J.; Yang, Q.; Li, G. X. The effects of molecular weight and supercritical CO2 on the phase morphology of organic solvent free porous scaffolds. J. Supercrit. Fluids 2018, 140, 279–289.

[55]

Chen, J.; Ye, J. G.; Liao, X.; Li, S. J.; Xiao, W.; Yang, Q.; Li, G. X. Organic solvent free preparation of porous scaffolds based on the phase morphology control using supercritical CO2. J. Supercrit. Fluids 2019, 149, 88–96.

[56]

Zou, F. F.; Chen, J.; Liao, X.; Song, P. W.; Li, G. X. Efficient electrical conductivity and electromagnetic interference shielding performance of double percolated polymer composite foams by phase coarsening in supercritical CO2. Compos. Sci. Technol. 2021, 213, 108895.

[57]

Gong, T.; Bao, R. Y.; Liu, Z. Y.; Xie, B. H.; Yang, M. B.; Yang, W. The effect of chain mobility on the coarsening process of co-continuous, immiscible polymer blends under quiescent melt annealing. Phys. Chem. Chem. Phys. 2017, 19, 12712–12719.

[58]

Gonzalez-Garzon, M.; Shahbikian, S.; Huneault, M. A. Properties and phase structure of melt-processed PLA/PMMA blends. J. Polym. Res. 2018, 25, 58.

[59]

Mahmood, S. H.; Keshtkar, M.; Park, C. B. Determination of carbon dioxide solubility in polylactide acid with accurate PVT properties. J. Chem. Thermodyn. 2014, 70, 13–23.

[60]

Ushiki, I.; Hayashi, S.; Kihara, S. I.; Takishima, S. Solubilities and diffusion coefficients of carbon dioxide and nitrogen in poly(methyl methacrylate) at high temperatures and pressures. J. Supercrit. Fluids 2019, 152, 104565.

[61]

Liao, X.; Zhang, H. C.; Wang, Y. W.; Wu, L. Y.; Li, G. X. Unique interfacial and confined porous morphology of PLA/PS blends in supercritical carbon dioxide. RSC Adv. 2014, 4, 45109–45117.

[62]

Yuan, Z. H.; Favis, B. D. Macroporous poly(L-lactide) of controlled pore size derived from the annealing of co-continuous polystyrene/poly(L-lactide) blends. Biomaterials 2004, 25, 2161–2170.

[63]

Nasti, G.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V. Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer 2016, 99, 193–203.

[64]

Moussaif, N.; Groeninckx, G. Nanocomposites based on layered silicate and miscible PVDF/PMMA blends: Melt preparation, nanophase morphology and rheological behaviour. Polymer 2003, 44, 7899–7906.

[65]

Abdel-Goad, M.; Pötschke, P. Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites. J. Non-Newtonian Fluid Mech. 2005, 128, 2–6.

[66]

Khare, R. A.; Bhattacharyya, A. R.; Kulkarni, A. R.; Saroop, M.; Biswas, A. Influence of multiwall carbon nanotubes on morphology and electrical conductivity of PP/ABS blends. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 2286–2295.

[67]

Göldel, A.; Marmur, A.; Kasaliwal, G. R.; Pötschke, P.; Heinrich, G. Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing. Macromolecules 2011, 44, 6094–6102.

Nano Research
Pages 613-623
Cite this article:
Zou F, Liao X, Song P, et al. Enhancement of electrical conductivity and electromagnetic interference shielding performance via supercritical CO2 induced phase coarsening for double percolated polymer blends. Nano Research, 2023, 16(1): 613-623. https://doi.org/10.1007/s12274-022-4867-4
Topics:
Part of a topical collection:

1053

Views

22

Crossref

19

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 07 June 2022
Revised: 22 July 2022
Accepted: 04 August 2022
Published: 13 September 2022
© Tsinghua University Press 2022
Return