AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Intensifying uneven charge distribution via geometric distortion engineering in atomically dispersed M-Nx/S sites for efficient oxygen electroreduction

Zhuting Zhang1Simin Yang1Rui Jiang1Tian Sheng2( )Chunfeng Shi3( )Yueguang Chen1( )Leyu Wang1( )
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214000, China
Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
Show Author Information

Graphical Abstract

A novel seed encapsulation–decomposition strategy was proposed for the geometric engineering and thermal atomization of a series of Cu-Nx/S sites by peripheral C–S or C–N bond cleavage. The increased distortion degree of the Cu-Nx/S molecular structure intensified charge redistribution, changed the rate-determining step and substantially decreased the overall ORR energy barriers for Zn-air batteries.

Abstract

Fine regulation of geometric structures has great promise to acquire specific electronic structures and improve the catalytic performance of single-atom catalysts, yet it remains a challenge. Herein, a novel seed encapsulation–decomposition strategy is proposed for the geometric distortion engineering and thermal atomization of a series of Cu-Nx/S moieties anchored on carbon supports. During pyrolysis, seeds (Cu2+, CuO, or Cu7S4 nanoparticles) confined in metal organic framework can accommodate single Cu atoms with Cu–N or Cu–S coordination bonds and simultaneously induce C–S or C–N bond cleavage in the second coordination shell of Cu centers, which are identified to manipulate the distortion degree of Cu-Nx/S moieties. The severely distorted Cu-N3S molecular structure endows the resultant catalyst with excellent oxygen reduction reaction activity (E1/2 = 0.885 V) and zinc-air battery performance (peak power density of 210 mW·cm−2), outperforming the asymmetrical and symmetrical Cu-N4 structures. A combined experimental and theoretical study reveals that the geometric distortion of Cu-Nx/S moieties creates uneven charge distribution by a unique topological correlation effect, which increases the metal charge and shifts the d-band center toward the Fermi level, thereby optimizing the inter-mediate adsorption energy.

Electronic Supplementary Material

Download File(s)
12274_2022_4870_MOESM1_ESM.pdf (2 MB)

References

1

Li, H. Q.; Zeng, R.; Feng, X. R.; Wang, H. S.; Xu, W. X.; Lu, X. Y.; Xie, Z. X.; Abruña, H. D. Oxidative stability matters: A case study of palladium hydride nanosheets for alkaline fuel cells. J. Am. Chem. Soc. 2022, 144, 8106–8114.

2

Yang, Y.; Peltier, C. R.; Zeng, R.; Schimmenti, R.; Li, Q. H.; Huang, X.; Yan, Z. F.; Potsi, G.; Selhorst, R.; Lu, X. Y. et al. Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem. Rev. 2022, 122, 6117–6321.

3

Xie, M. H.; Lyu, Z.; Chen, R. H.; Shen, M.; Cao, Z. M.; Xia, Y. N. Pt-Co@Pt octahedral nanocrystals: Enhancing their activity and durability toward oxygen reduction with an intermetallic core and an ultrathin shell. J. Am. Chem. Soc. 2021, 143, 8509–8518.

4

Wang, G. Z.; Chang, J. F.; Koul, S.; Kushima, A.; Yang, Y. CO2 bubble-assisted Pt exposure in PtFeNi porous film for high-performance zinc-air battery. J. Am. Chem. Soc. 2021, 143, 11595–11601.

5

Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.

6

Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

7

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

8

Han, G. K.; Zhang, X.; Liu, W.; Zhang, Q. H.; Wang, Z. Q.; Cheng, J.; Yao, T.; Gu, L.; Du, C. Y.; Gao, Y. Z. et al. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 2021, 12, 6335.

9
Miao, Z. P.; Li, S. Z.; Priest, C.; Wang, T. Y.; Wu, G.; Li, Q. Effective approaches for designing stable M-Nx/C oxygen-reduction catalysts for proton exchange membrane fuel cells. Adv. Mater., in press, https://doi.org/10.1002/adma.202200595.
10

Luo, E. R.; Chu, Y. Y.; Liu, J.; Shi, Z. P.; Zhu, S. Y.; Gong, L. Y.; Ge, J. J.; Choi, C. H.; Liu, C. P.; Xing, W. Pyrolyzed M-Nx catalysts for oxygen reduction reaction: Progress and prospects. Energy Environ. Sci. 2021, 14, 2158–2185.

11

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res., 2022, 15, 7806–7839.

12

Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem., Int. Ed. 2005, 44, 2132–2135.

13

Zhu, X. F.; Tan, X.; Wu, K. H.; Haw, S. C.; Pao, C. W.; Su, B. J.; Jiang, J. J.; Smith, S. C.; Chen, J. M.; Amal, R. et al. Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning. Angew. Chem., Int. Ed. 2021, 60, 21911–21917.

14

Zhang, J. M.; Ma, J.; Choksi, T. S.; Zhou, D. J.; Han, S. B.; Liao, Y. F.; Yang, H. B.; Liu, D.; Zeng, Z. P.; Liu, W. et al. Strong metal–support interaction boosts activity, selectivity, and stability in electrosynthesis of H2O2. J. Am. Chem. Soc. 2022, 144, 2255–2263.

15

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

16

Qin, J. Y.; Liu, H.; Zou, P. C.; Zhang, R.; Wang, C. Y.; Xin, H. L. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 2197–2207.

17

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

18

Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Hu, Y. F.; Amiinu, I. S.; Wang, X.; Zhou, J. G.; Xia, H. C.; Song, Z. B.; Xu, Q. et al. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 2018, 12, 1894–1901.

19

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

20

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

21

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

22

Yang, Y.; Li, J. Y.; Zhang, C. Y.; Yang, Z. Q.; Sun, P. L.; Liu, S. X.; Cao, Q. E. Theoretical insights into nitrogen-doped graphene-supported Fe, Co, and Ni as single-atom catalysts for CO2 reduction reaction. J. Phys. Chem. C 2022, 126, 4338–4346.

23

McCardle, K. Theoretical insights into single-atom catalysts. Nat. Comput. Sci. 2022, 2, 138–138.

24

Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

25

Jose, V.; Nsanzimana, J. M. V.; Hu, H. M.; Choi, J.; Wang, X.; Lee, J. M. Highly efficient oxygen reduction reaction activity of N-doped carbon-cobalt boride heterointerfaces. Adv. Energy Mater. 2021, 11, 2100157.

26

Li, D. H.; Li, C. Y.; Zhang, L. J.; Li, H.; Zhu, L. K.; Yang, D. J.; Fang, Q. R.; Qiu, S. L.; Yao, X. D. Metal-free thiophene-sulfur covalent organic frameworks: Precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 2020, 142, 8104–8108.

27

Zhang, S. B.; Jin, M.; Shi, T. F.; Han, M. M.; Sun, Q.; Lin, Y.; Ding, Z. H.; Zheng, L. R.; Wang, G. Z.; Zhang, Y. X. et al. Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia. Angew. Chem., Int. Ed. 2020, 59, 13423–13429.

28

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

29

Cui, J. B.; Jiang, R.; Guo, C.; Bai, X. L.; Xu, S. Y.; Wang, L. Y. Fluorine grafted Cu7S4-Au heterodimers for multimodal imaging guided photothermal therapy with high penetration depth. J. Am. Chem. Soc. 2018, 140, 5890–5894.

30

Chen, H. L.; Song, M. L.; Tang, J.; Hu, G. F.; Xu, S. Y.; Guo, Z. D.; Li, N. N.; Cui, J. B.; Zhang, X. Z.; Chen, X. Y. et al. Ultrahigh 19F loaded Cu1.75S nanoprobes for simultaneous 19F magnetic resonance imaging and photothermal therapy. ACS Nano 2016, 10, 1355–1362.

31

Gu, Y.; Xu, T. F.; Zhu, Z. X.; Chen, X. F.; Chen, W. X.; Lu, W. Y. Atomic-scale tailoring and molecular-level tracking of oxygen-containing tungsten single-atom catalysts with enhanced singlet oxygen generation. ACS Appl. Mater. Interfaces 2021, 13, 37142–37151.

32

Qu, K. G.; Zheng, Y.; Dai, S.; Qiao, S. Z. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 2016, 19, 373–381.

33

Yang, J. Q.; Zhou, X. L.; Wu, D. H.; Zhao, X. D.; Zhou, Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 2017, 29, 1604108.

34

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

35

Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y. M.; Quintero-Bermudez, R. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428.

36

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

37

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

38

Guo, Q. B.; Ma, Y. F.; Chen, T. T.; Xia, Q. Y.; Yang, M.; Xia, H.; Yu, Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 2017, 11, 12658–12667.

39

Yang, S. B.; Zhi, L. J.; Tang, K.; Feng, X. L.; Maier, J.; Müllen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 2012, 22, 3634–3640.

40

Jiang, R.; Liu, T. X.; Wu, R. J.; Guo, C.; Chen, Y. G.; Xiang, G. L.; Wang, L. Y. Tailoring N-coordination environment by ligand competitive thermolysis strategy for efficient oxygen reduction. ACS Appl. Mater. Interfaces 2020, 12, 7270–7276.

41

Kim, S. J.; Mahmood, J.; Kim, C.; Han, G. F.; Kim, S. W.; Jung, S. M.; Zhu, G. M.; De Yoreo, J. J.; Kim, G.; Baek, J. B. Defect-free encapsulation of Fe0 in 2D fused organic networks as a durable oxygen reduction electrocatalyst. J. Am. Chem. Soc. 2018, 140, 1737–1742.

42

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

Nano Research
Pages 8928-8935
Cite this article:
Zhang Z, Yang S, Jiang R, et al. Intensifying uneven charge distribution via geometric distortion engineering in atomically dispersed M-Nx/S sites for efficient oxygen electroreduction. Nano Research, 2022, 15(10): 8928-8935. https://doi.org/10.1007/s12274-022-4870-y
Topics:

1266

Views

14

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 16 July 2022
Revised: 03 August 2022
Accepted: 03 August 2022
Published: 22 August 2022
© Tsinghua University Press 2022
Return