AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Advances in electrolyte safety and stability of ion batteries under extreme conditions

Zhuo Chen1Keliang Wang1,2( )Pucheng Pei2Yayu Zuo1Manhui Wei1Hengwei Wang1Pengfei Zhang1Nuo Shang1
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
State Key Lab. of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Facing increasingly complex application scenarios, the safety and stability of electrolytes under extreme conditions are becoming more critical. This review summarizes the research progress of the safety and stability of several electrolytes under extreme conditions, and puts out an outlook for future electrolyte development.

Abstract

Electric vehicles have been promoted worldwide due to fast-charge technology of ion batteries. However, ion batteries’ capacity and cycle life severely decay under extreme conditions, which is mostly related to electrolyte conductivity drop and side reactions. This review highlights the safety and stability of ion batteries in terms of thermal stability, non-flammability, low-temperature, and so on, outlining the disadvantages of organic liquid electrolyte, and summarizing effective solutions of polymer electrolytes, solid-state electrolytes, ionic liquid electrolytes, and aqueous electrolytes for the batteries. Moreover, the outlook on the electrolytes is put forward, which is available for research and development of the next generation batteries.

References

[1]

Alpanda, S.; Peralta-Alva, A. Oil crisis, energy-saving technological change and the stock market crash of 1973-74. Rev. Econ. Dynam. 2010, 13, 824–842.

[2]

Pei, P. C.; Wang, K. L.; Ma, Z. Technologies for extending zinc-air battery’s cyclelife: A review. Appl. Energy 2014, 128, 315–324.

[3]

Wang, K. L.; Pei, P. C.; Wang, Y. C.; Liao, C.; Wang, W.; Huang, S. W. Advanced rechargeable zinc-air battery with parameter optimization. Appl. Energy 2018, 225, 848–856.

[4]

Pei, P. C.; Huang, S. W.; Chen, D. F.; Li, Y. H.; Wu, Z. Y.; Ren, P.; Wang, K. L.; Jia, X. N. A high-energy-density and long-stable-performance zinc-air fuel cell system. Appl. Energy 2019, 241, 124–129.

[5]

Wei, M. H.; Wang, K. L.; Zuo, Y. Y.; Liu, J.; Zhang, P. F.; Pei, P. C.; Zhao, S. Y.; Li, Y. W.; Chen, J. F. A high-performance Al-air fuel cell using a mesh-encapsulated anode via Al-Zn energy transfer. iScience 2021, 24, 103259.

[6]

Abraham, K. M. Directions in secondary lithium battery research and development. Electrochim. Acta 1993, 38, 1233–1248.

[7]

Qiao, Y.; Jiang, K. Z.; Deng, H.; Zhou, H. S. A high-energy-density and long-life lithium-ion battery via reversible oxide-peroxide conversion. Nat. Catal. 2019, 2, 1035–1044.

[8]

Jin, T.; Li, H. X.; Zhu, K. J.; Wang, P. F.; Liu, P.; Jiao, L. F. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342–2377.

[9]
Sakti, A.; Michalek, J. J.; Fuchs, E. R. H.; Whitacre, J. F. Corrigendum to “A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification” [J. Power Sources 273 (2015) 966-980]. J. Power Sources 2016, 331, 567.
[10]
Pan, A. R.; Wang, Z. C.; Zhang, F. R.; Wang, L.; Xu, J. J.; Zheng, J. Y.; Hu, J. C.; Zhao, C. L.; Wu, X. D. Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries. Nano Res. , in press,DOI: 10.1007/s12274-022-4655-1.
[11]

Qiao, Y.; Yang, H. J.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. S. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 2021, 6, 653–662.

[12]

Liu, C. Y.; Xu, F.; Liu, Y. L.; Ma, J.; Liu, P. Q.; Wang, D. M.; Lao, C. S.; Chen, Z. W. High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing. Electrochim. Acta 2019, 314, 81–88.

[13]

Plichta, E. J.; Behl, W. K. A low-temperature electrolyte for lithium and lithium-ion batteries. J. Power Sources 2000, 88, 192–196.

[14]

Zhang, S.; Xu, K.; Jow, T. Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. J. Solid State Electrochem. 2003, 7, 147–151.

[15]

Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc dendrite growth and inhibition strategies. Mater. Today Energy 2021, 20, 100692.

[16]

Leng, F.; Tan, C. M.; Pecht, M. Effect of temperature on the aging rate of Li Ion battery operating above room temperature. Sci. Rep. 2015, 5, 12967.

[17]

Zhang, P. F.; Wang, K. L.; Zuo, Y. Y.; Wei, M. H.; Pei, P. C.; Liu, J.; Wang, H. W.; Chen, Z.; Shang, N. A flexible zinc-air battery using fiber absorbed electrolyte. J. Power Sources 2022, 531, 231342.

[18]

Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 2017, 10, 4082–4114.

[19]

Doughty, D. H.; Roth, E. P. A general discussion of Li ion battery safety. Electrochem. Soc. Interface 2012, 21, 37–44.

[20]

Araki, K.; Sato, N. Chemical transformation of the electrode surface of lithium-ion battery after storing at high temperature. J. Power Sources 2003, 124, 124–132.

[21]

Wu, X. H.; Pan, K. C.; Jia, M. M.; Ren, Y. F.; He, H. Y.; Zhang, L.; Zhang, S. J. Electrolyte for lithium protection: From liquid to solid. Green Energy Environ. 2019, 4, 360–374.

[22]

Otrachshenko, V.; Popova, O. Does weather sharpen income inequality in Russia? Rev. Income Wealth 2022, 68, S193–S223.

[23]

Jones, J. P.; Smart, M. C.; Krause, F. C.; West, W. C.; Brandon, E. J. Batteries for robotic spacecraft. Joule 2022, 6, 923–928.

[24]

Wang, Q. S.; Jiang, L. H.; Yu, Y.; Sun, J. H. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93–114.

[25]

Shen, Y. H.; Liu, B.; Liu, X. R.; Liu, J.; Ding, J.; Zhong, C.; Hu, W. B. Water-in-salt electrolyte for safe and high-energy aqueous battery. Energy Storage Mater. 2021, 34, 461–474.

[26]

Niu, H. Z.; Wang, L.; Guan, P.; Zhang, N.; Yan, C. R.; Ding, M. L.; Guo, X. L.; Huang, T. T.; Hu, X. L. Recent advances in application of ionic liquids in electrolyte of lithium ion batteries. J. Energy Storage. 2021, 40, 102659.

[27]

Hubble, D.; Brown, D. E.; Zhao, Y. Z.; Fang, C.; Lau, J.; McCloskey, B. D.; Liu, G. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 2022, 15, 550–578.

[28]

Huang, J. H.; Dong, X. L.; Wang, N.; Wang, Y. G. Building low-temperature batteries: Non-aqueous or aqueous electrolyte? Curr. Opin. Electrochem. 2022, 33, 100949.

[29]

Zhang, S. S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364.

[30]

Zhai, P. B.; Liu, L. X.; Gu, X. K.; Wang, T. S.; Gong, Y. J. Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 2020, 10, 2001257.

[31]

Li, Q.; Liu, G.; Cheng, H. R.; Sun, Q. J.; Zhang, J. L.; Ming, J. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges. Chem. -Eur. J. 2021, 27, 15842–15865.

[32]

Alper, J. The battery: Not yet a terminal case. Science 2002, 296, 1224–1226.

[33]

Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

[34]

Xu, K.; von Cresce, A.; Lee, U. Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 2010, 26, 11538–11543.

[35]

Bandara, T. G. T. A.; Viera, J. C.; González, M. The next generation of fast charging methods for lithium-ion batteries: The natural current-absorption methods. Renew. Sustainable Energy Rev. 2022, 162, 112338.

[36]

Zheng, J. Y.; Li, H. Fundamental scientific aspects of lithium batteries (V)-interfaces. Energy Storage Sci. Technol. 2013, 2, 503–513.

[37]

Sun, D. P.; Tan, Z.; Tian, X. Z.; Ke, F.; Wu, Y. L.; Zhang, J. Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Res. 2021, 14, 4370–4385.

[38]

Li, M.; Feng, M.; Luo, D.; Chen, Z. W. Fast charging Li-ion batteries for a new era of electric vehicles. Cell Rep. Phys. Sci. 2020, 1, 100212.

[39]

Zhu, G. L.; Zhao, C. Z.; Huang, J. Q.; He, C. X.; Zhang, J.; Chen, S. H.; Xu, L.; Yuan, H.; Zhang, Q. Fast charging lithium batteries: Recent progress and future prospects. Small 2019, 15, 1805389.

[40]

Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.

[41]

Ouyang, D.; Chen, M. Y.; Liu, J. H.; Wei, R. C.; Weng, J. W.; Wang, J. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. RSC Adv. 2018, 8, 33414–33424.

[42]

Mendoza-Hernandez, O. S.; Ishikawa, H.; Nishikawa, Y.; Maruyama, Y.; Umeda, M. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge. J. Power Sources 2015, 280, 499–504.

[43]

Wen, J. W.; Yu, Y.; Chen, C. H. A review on lithium-ion batteries safety issues: Existing problems and possible solutions. Mater. Express 2012, 2, 197–212.

[44]

Zhu, K. J.; Li, Z. P.; Sun, Z. Q.; Liu, P.; Jin, T.; Chen, X. C.; Li, H. X.; Lu, W. B.; Jiao, L. F. Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 2022, 18, 2107662.

[45]

Jones, J. P.; Smart, M. C.; Krause, F. C.; Ratnakumar, B. V.; Brandon, E. J. The effect of electrolyte composition on lithium plating during low temperature charging of Li-ion cells. ECS Trans. 2017, 75, 1–11.

[46]

Van Noorden, R. The rechargeable revolution: A better battery. Nature 2014, 507, 26–28.

[47]

Megahed, S.; Ebner, W. Lithium-ion battery for electronic applications. J. Power Sources 1995, 54, 155–162.

[48]

Sasaki, Y. Organic electrolytes of secondary lithium batteries. Electrochemistry 2008, 76, 2–15.

[49]

Liu, Y.; Wu, J.; Li, H. Fundamental scientific aspects of lithium ion batteries (Ⅸ)—Nonaqueous electrolyte materials. Energy Storage Sci. Technol. 2014, 3, 262–282.

[50]
Botte, G. G.; White, R. E.; Zhang, Z. M. Thermal stability of LiPF6-EC: EMC electrolyte for lithium ion batteries. J. Power Sources 2001, 97–98, 570–575.
[51]

Kawamura, T.; Okada, S.; Yamaki, J. I. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J. Power Sources 2006, 156, 547–554.

[52]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[53]

Larsson, F.; Mellander, B. E. Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells. J. Electrochem. Soc. 2014, 161, A1611–A1617.

[54]

Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Jiao, S. H.; Polzin, B. J.; Zhang, J. G.; Xu, W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2017, 2, 17012.

[55]

Zhang, S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 2006, 162, 1379–1394.

[56]

Haregewoin, A. M.; Wotango, A. S.; Hwang, B. J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy Environ. Sci. 2016, 9, 1955–1988.

[57]

Rauh, R. D.; Brummer, S. B. Effect of additives on lithium cycling in propylene carbonate. Electrochim. Acta 1977, 22, 75–83.

[58]

Ming, J.; Cao, Z.; Wu, Y. Q.; Wahyudi, W.; Wang, W. X.; Guo, X. R.; Cavallo, L.; Hwang, J. Y.; Shamim, A.; Li, L. J. et al. New insight on the role of electrolyte additives in rechargeable lithium ion batteries. ACS Energy Lett. 2019, 4, 2613–2622.

[59]

Qian, Y. X.; Hu, S. G.; Zou, X. S.; Deng, Z. H.; Xu, Y. Q.; Cao, Z. Z.; Kang, Y. Y.; Deng, Y. F.; Shi, Q.; Xu, K. et al. How electrolyte additives work in Li-ion batteries. Energy Stor. Mater. 2019, 20, 208–215.

[60]

Zhao, H. J.; Yu, X. Q.; Li, J. D.; Li, B.; Shao, H. Y.; Li, L.; Deng, Y. H. Film-forming electrolyte additives for rechargeable lithium-ion batteries: Progress and outlook. J. Mater. Chem. A 2019, 7, 8700–8722.

[61]

Wang, X. M.; Yasukawa, E.; Kasuya, S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties. J. Electrochem. Soc. 2001, 148, A1058–A1065.

[62]

Wang, X. M.; Yasukawa, E.; Kasuya, S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. The use of an amorphous carbon anode. J. Electrochem. Soc. 2001, 148, A1066–A1071.

[63]

Chalasani, D.; Li, J.; Jackson, N. M.; Payne, M.; Lucht, B. L. Methylene ethylene carbonate: Novel additive to improve the high temperature performance of lithium ion batteries. J. Power Sources 2012, 208, 67–73.

[64]

Liao, L. X.; Zuo, P. J.; Ma, Y. L.; An, Y. X.; Yin, G. P.; Gao, Y. Z. Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode. Electrochim. Acta 2012, 74, 260–266.

[65]

Guo, X. X.; Zhang, Z. Y.; Li, J. W.; Luo, N. J.; Chai, G. L.; Miller, T. S.; Lai, F. L.; Shearing, P.; Brett, D. J. L.; Han, D. L. et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 2021, 6, 395–403.

[66]

Smith, K. A.; Smart, M. C.; Surya Prakash, G. K.; Ratnakumar, B. V. Electrolytes containing fluorinated ester Co-solvents for low-temperature Li-ion cells. ECS Trans. 2008, 11, 91–98.

[67]

Li, Y. H.; Wu, X. L.; Kim, J. H.; Xin, S.; Su, J.; Yan, Y.; Lee, J. S.; Guo, Y. G. A novel polymer electrolyte with improved high-temperature-tolerance up to 170 °C for high-temperature lithium-ion batteries. J. Power Sources 2013, 244, 234–239.

[68]

Xu, D.; Jin, J.; Chen, C. H.; Wen, Z. Y. From nature to energy storage: A novel sustainable 3D cross-linked chitosan-PEGGE-based gel polymer electrolyte with excellent lithium-ion transport properties for lithium batteries. ACS Appl. Mater. Interfaces 2018, 10, 38526–38537.

[69]

Wang, S.; Song, H. C.; Song, X. Y.; Zhu, T.; Ye, Y. P.; Chen, J. M.; Yu, L. W.; Xu, J.; Chen, K. J. An extra-wide temperature all-solid-state lithium-metal battery operating from −73 °C to 120 °C. Energy Storage Mater. 2021, 39, 139–145.

[70]

Lin, Z. H.; Liu, J. Low-temperature all-solid-state lithium-ion batteries based on a di-cross-linked starch solid electrolyte. RSC Adv. 2019, 9, 34601–34606.

[71]

Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567–5580.

[72]

Nakagawa, H.; Fujino, Y.; Kozono, S.; Katayama, Y.; Nukuda, T.; Sakaebe, H.; Matsumoto, H.; Tatsumi, K. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J. Power Sources 2007, 174, 1021–1026.

[73]

Jin, X. T.; Song, L.; Dai, C. L.; Xiao, Y. K.; Han, Y. Y.; Zhang, X. Q.; Li, X. Y.; Bai, C. C.; Zhang, J. T.; Zhao, Y. et al. An aqueous anti-freezing and heat-tolerant symmetric microsupercapacitor with 2. 3 V output voltage. Adv. Energy Mater. 2021, 11, 2101523.

[74]

Ramanujapuram, A.; Yushin, G. Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv. Energy Mater. 2018, 8, 1802624.

[75]

Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21–42.

[76]

Andreev, Y. G.; Bruce, P. G. Polymer electrolyte structure and its implications. Electrochim. Acta 2000, 45, 1417–1423.

[77]

Zhang, P.; Wang, K.; Pei, P.; Zuo, Y.; Wei, M.; Liu, X.; Xiao, Y.; Xiong, J. Selection of hydrogel electrolytes for flexible zinc-air batteries. Mater. Today Chem. 2021, 21, 100538.

[78]

Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

[79]

Teofilo, V. L.; Isaacson, M. J.; Higgins, R. L.; Cuellar, E. A. Advanced lithium ion solid polymer electrolyte battery development. IEEE Aerosp. Electron. Syst. Mag. 1999, 14, 43–47.

[80]

Wang, X. L.; Hao, X. J.; Xia, Y.; Liang, Y. F.; Xia, X. H.; Tu, J. P. A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries. J. Membr. Sci. 2019, 582, 37–47.

[81]

Nagajothi, A. J.; Kannan, R.; Rajashabala, S. Preparation and characterization of PEO-based composite gel-polymer electrolytes complexed with lithium trifluoro methane sulfonate. Mater. Sci. Poland. 2018, 36, 185–192.

[82]
Khalifa, M.; Janakiraman, S.; Ghosh, S.; Venimadhav, A.; Anandhan, S. PVDF/halloysite nanocomposite-based non-wovens as gel polymer electrolyte for high safety lithium ion battery. Polym. Compos. 2019, 40, 2320–2334.
[83]

Janakiraman, S.; Padmaraj, O.; Ghosh, S.; Venimadhav, A. A porous poly (vinylidene fluoride-co-hexafluoropropylene) based separator-cum-gel polymer electrolyte for sodium-ion battery. J. Electroanal. Chem. 2018, 826, 142–149.

[84]

Park, M. S.; Woo, H. S.; Heo, J. M.; Kim, J. M.; Thangavel, R.; Lee, Y. S.; Kim, D. W. Thermoplastic polyurethane elastomer-based gel polymer electrolytes for sodium-metal cells with enhanced cycling performance. ChemSusChem 2019, 12, 4645–4654.

[85]

Hosseinioun, A.; Nürnberg, P.; Schönhoff, M.; Diddens, D.; Paillard, E. Improved lithium ion dynamics in crosslinked PMMA gel polymer electrolyte. RSC Adv. 2019, 9, 27574–27582.

[86]
Prasanna, C. M. S.; Suthanthiraraj, S. A. PVC/PEMA-based blended nanocomposite gel polymer electrolytes plasticized with room temperature ionic liquid and dispersed with nano-ZrO2 for zinc ion batteries. Polym. Compos. 2019, 40, 3402–3411.
[87]

Cui, Y. Y.; Chai, J. C.; Du, H. P.; Duan, Y. L.; Xie, G. W.; Liu, Z. H.; Cui, G. L. Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries. ACS Appl. Mater. Interfaces 2017, 9, 8737–8741.

[88]

Li, L.; Yu, M.; Wang, F. J.; Zhang, X. F.; Shao, Z. Q. Synergistically suppressing lithium dendrite growth by coating poly-L-lactic acid on sustainable gel polymer electrolyte. Energy Technol. 2019, 7, 1800768.

[89]

Zhao, L. Z.; Fu, J. C.; Du, Z.; Jia, X. B.; Qu, Y. Y.; Yu, F.; Du, J.; Chen, Y. High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J. Membr. Sci. 2020, 593, 117428.

[90]

Wu, T. Q.; Chen, H. D.; Wang, Q. S.; Sun, J. H. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. J. Hazard. Mater. 2018, 344, 733–741.

[91]

Wang, D.; Zheng, L. L.; Li, X. C.; Du, G. C.; Feng, Y.; Jia, L. Z.; Dai, Z. Q. Thermal safety of ternary soft pack power lithium battery. Energy Storage Sci. Technol. 2020, 9, 1517–1525.

[92]

Li, Z.; Weng, S. T.; Fu, J. L.; Wang, X. X.; Zhou, X. Y.; Zhang, Q. H.; Wang, X. F.; Wei, L.; Guo, X. Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy Storage Mater. 2022, 47, 542–550.

[93]

Wang, J. W.; Huang, Y.; Liu, B. B.; Li, Z. X.; Zhang, J. Y.; Yang, G. S.; Hiralal, P.; Jin, S. Y.; Zhou, H. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Storage Mater. 2021, 41, 599–605.

[94]

Slane, S.; Salomon, M. Composite gel electrolyte for rechargeable lithium batteries. J. Power Sources 1995, 55, 7–10.

[95]

Zuo, Y. Y.; Wang, K. L.; Zhao, S. Y.; Wei, M. H.; Liu, X. T.; Zhang, P. F.; Xiao, Y.; Xiong, J. Y. A high areal capacity solid-state zinc-air battery via interface optimization of electrode and electrolyte. Chem. Eng. J. 2022, 430, 132996.

[96]

Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

[97]

Li, J. X.; Ren, J. F.; Li, C. X.; Li, P. X.; Wu, T. T.; Liu, S. W.; Wang, L. High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery. Nano Res. 2022, 15, 7190–7198.

[98]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[99]

Li, J. C.; Ma, C.; Chi, M. F.; Liang, C. D.; Dudney, N. J. Solid electrolyte: The key for high-voltage lithium batteries. Adv. Energy Mater. 2015, 5, 1401408.

[100]

Qiu, G. R.; Shi, Y. P.; Huang, B. L. A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Res. 2022, 15, 5153–5160.

[101]

Wu, Z. J.; Xie, Z. K.; Yoshida, A.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renew. Sustainable Energy Rev. 2019, 109, 367–385.

[102]

Chen, S. M.; Wen, K. H.; Fan, J. T.; Bando, Y.; Golberg, D. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: From liquid to solid electrolytes. J. Mater. Chem. A 2018, 6, 11631–11663.

[103]

Zuo, Y. Y.; Wang, K. L.; Wei, M. H.; Zhao, S. Y.; Zhang, P. F.; Pei, P. C. Starch gel for flexible rechargeable zinc-air batteries. Cell Rep. Phys. Sci. 2022, 3, 100687.

[104]

Robinson, A. L.; Janek, J. Solid-state batteries enter EV fray. MRS Bull. 2014, 39, 1046–1047.

[105]

Yu, Z. M.; Su, J. Analysis of Toyota’s patents on lithium ion solid electrolyte. Energy Storage Sci. Technol. 2019, 8, 609–612.

[106]

Banerjee, A.; Wang, X. F.; Fang, C. C.; Wu, E. A.; Meng, Y. S. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 2020, 120, 6878–6933.

[107]

Choi, H.; Kim, H. W.; Ki, J. K.; Lim, Y. J.; Kim, Y.; Ahn, J. H. Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries. Nano Res. 2017, 10, 3092–3102.

[108]

Porz, L.; Swamy, T.; Sheldon, B. W.; Rettenwander, D.; Frömling, T.; Thaman, H. L.; Berendts, S.; Uecker, R.; Carter, W. C.; Chiang, Y. M. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 2017, 7, 1701003.

[109]

Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291.

[110]

Yao, X. Y.; Huang, B. X.; Yin, J. Y.; Peng, G.; Huang, Z.; Gao, C.; Liu, D.; Xu, X. X. All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. Chin. Phys. B 2016, 25, 018802.

[111]

Cheng, S.; Smith, D. M.; Pan, Q. W.; Wang, S. J.; Li, C. Y. Anisotropic ion transport in nanostructured solid polymer electrolytes. RSC Adv. 2015, 5, 48793–48810.

[112]

Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.

[113]

Lin, Z.; Liang, C. D. Lithium-sulfur batteries: From liquid to solid cells. J. Mater. Chem. A 2015, 3, 936–958.

[114]

Fu, X. T.; Yu, D. N.; Zhou, J. W.; Li, S. W.; Gao, X.; Han, Y. Z.; Qi, P. F.; Feng, X.; Wang, B. Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm 2016, 18, 4236–4258.

[115]

Zuo, C.; Yang, M. L.; Wang, Z. J.; Jiang, K.; Li, S. B.; Luo, W.; He, D.; Liu, C. M.; Xie, X. L.; Xue, Z. G. Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy-amine reaction for high-performance all-solid-state lithium-ion batteries. J. Mater. Chem. A 2019, 7, 18871–18879.

[116]

Ma, F. R.; Zhang, Z. Q.; Yan, W. C.; Ma, X. D.; Sun, D. Y.; Jin, Y. C.; Chen, X. C.; He, K. Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 4675–4683.

[117]

Kou, Z. Y.; Lu, Y.; Miao, C.; Li, J. Q.; Liu, C. J.; Xiao, W. High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Met. 2021, 40, 3175–3184.

[118]

Wang, Q. L.; Liu, X. C.; Cui, Z. L.; Shangguan, X. H.; Zhang, H. R.; Zhang, J. J.; Tang, K.; Li, L. S.; Zhou, X. H.; Cui, G. L. A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries. Electrochim. Acta 2020, 337, 135843.

[119]

Liu, W. H.; Wu, X. L. Work mechanism and research progress of solid polymer electrolytes for lithium-ion batteries. J. Mol. Sci. 2016, 32, 379–395.

[120]

Yarmolenko, O. V.; Yudina, A. V.; Khatmullina, K. G. Nanocomposite polymer electrolytes for the lithium power sources (a review). Russ. J. Electrochem. 2018, 54, 325–343.

[121]

Kim, R.; Miara, L. J.; Kim, J. H.; Kim, J. S.; Im, D.; Wang, Y. Computational design and experimental synthesis of air-stable solid-state ionic conductors with high conductivity. Chem. Mater. 2021, 33, 6909–6917.

[122]

Li, Z.; Lu, Y.; Su, Q. L.; Wu, M. Y.; Que, X. C.; Liu, H. J. High-power bipolar solid-state batteries enabled by in-situ-formed ionogels for vehicle applications. ACS Appl. Mater. Interfaces 2022, 14, 5402–5413.

[123]

Johnson, K. E. What's an ionic liquid? Electrochem. Soc. Interface 2007, 16, 38–41.

[124]

Aslanov, L. A. Ionic liquids: Liquid structure. J. Mol. Liq. 2011, 162, 101–104.

[125]

Lewandowski, A.; Świderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J. Power Sources 2009, 194, 601–609.

[126]

Kim, J. K.; Matic, A.; Ahn, J. H.; Jacobsson, P. An imidazolium based ionic liquid electrolyte for lithium batteries. J. Power Sources 2010, 195, 7639–7643.

[127]

Matsumoto, K.; Hwang, J.; Kaushik, S.; Chen, C. Y.; Hagiwara, R. Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy Environ. Sci. 2019, 12, 3247–3287.

[128]

Yang, Q. W.; Zhang, Z. Q.; Sun, X. G.; Hu, Y. S.; Xing, H. B.; Dai, S. Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 2018, 47, 2020–2064.

[129]

Plashnitsa, L. S.; Kobayashi, E.; Noguchi, Y.; Okada, S.; Yamaki, J. I. Performance of NASICON symmetric cell with ionic liquid electrolyte. J. Electrochem. Soc. 2010, 157, A536–A543.

[130]

Hasa, I.; Passerini, S.; Hassoun, J. Characteristics of an ionic liquid electrolyte for sodium-ion batteries. J. Power Sources 2016, 303, 203–207.

[131]

Giffin, G. A. Ionic liquid-based electrolytes for “beyond lithium” battery technologies. J. Mater. Chem. A 2016, 4, 13378–13389.

[132]

Kim, H.; Ding, Y.; Kohl, P. A. LiSICON—Ionic liquid electrolyte for lithium ion battery. J. Power Sources 2012, 198, 281–286.

[133]

Wang, H. L.; Gu, S. C.; Bai, Y.; Chen, S.; Wu, F.; Wu, C. High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery. ACS Appl. Mater. Interfaces 2016, 8, 27444–27448.

[134]

Simonetti, E.; Maresca, G.; Appetecchi, G. B.; Kim, G. T.; Loeffler, N.; Passerini, S. Towards Li(Ni0.33Mn0. 33Co0. 33)O2/graphite batteries with ionic liquid-based electrolytes. I. Electrodes’ behavior in lithium half-cells. J. Power Sources 2016, 331, 426–434.

[135]

Wang, Y. D.; Zaghib, K.; Guerfi, A.; Bazito, F. F. C.; Torresi, R. M.; Dahn, J. R. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochim. Acta 2007, 52, 6346–6352.

[136]

Kerner, M.; Plylahan, N.; Scheers, J.; Johansson, P. Ionic liquid based lithium battery electrolytes: Fundamental benefits of utilising both TFSI and FSI anions? Phys. Chem. Chem. Phys. 2015, 17, 19569–19581.

[137]

Sun, H.; Zhu, G. Z.; Zhu, Y. M.; Lin, M. C.; Chen, H.; Li, Y. Y.; Hung, W. H.; Zhou, B.; Wang, X.; Bai, Y. X. et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv. Mater. 2020, 32, 2001741.

[138]

Yoo, D. J.; Kim, K. J.; Choi, J. W. The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes. Adv. Energy Mater. 2018, 8, 1702744.

[139]

Wang, Y.; Zhong, W. H. Development of electrolytes towards achieving safe and high-performance energy-storage devices: A review. ChemElectroChem 2015, 2, 22–36.

[140]

Elia, G. A.; Ulissi, U.; Mueller, F.; Reiter, J.; Tsiouvaras, N.; Sun, Y. K.; Scrosati, B.; Passerini, S.; Hassoun, J. A long-life lithium ion battery with enhanced electrode/electrolyte interface by using an ionic liquid solution. Chem. -Eur. J. 2016, 22, 6808–6814.

[141]

Plylahan, N.; Kerner, M.; Lim, D. H.; Matic, A.; Johansson, P. Ionic liquid and hybrid ionic liquid/organic electrolytes for high temperature lithium-ion battery application. Electrochim. Acta 2016, 216, 24–34.

[142]

Wang, Z. N.; Zheng, W. Z.; Sun, W. Z.; Zhao, L.; Yuan, W. K. Covalent organic frameworks-enhanced ionic conductivity of polymeric ionic liquid-based ionic gel electrolyte for lithium metal battery. ACS Appl. Energy Mater. 2021, 4, 2808–2819.

[143]

Montanino, M.; Moreno, M.; Carewska, M.; Maresca, G.; Simonetti, E.; Lo Presti, R.; Alessandrini, F.; Appetecchi, G. B. Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. J. Power Sources 2014, 269, 608–615.

[144]

Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 2012, 3, 1149.

[145]

Jin, T.; Ji, X.; Wang, P. F.; Zhu, K. J.; Zhang, J. X.; Cao, L. S.; Chen, L.; Cui, C. Y.; Deng, T.; Liu, S. F. et al. High-energy aqueous sodium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 11943–11948.

[146]

Beck, F.; Rüetschi, P. Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 2000, 45, 2467–2482.

[147]

Küehnel, R. S.; Reber, D.; Battaglia, C. A high-voltage aqueous electrolyte for sodium-ion batteries. ACS Energy Lett. 2017, 2, 2005–2006.

[148]

Li, W.; Dahn, J. R.; Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 1994, 264, 1115–1118.

[149]

Suo, L. M.; Oh, D.; Lin, Y. X.; Zhuo, Z. Q.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z. Q.; Kim, H. C. et al. How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 2017, 139, 18670–18680.

[150]

Posada, J. O. G.; Rennie, A. J. R.; Villar, S. P.; Martins, V. L.; Marinaccio, J.; Barnes, A.; Glover, C. F.; Worsley, D. A.; Hall, P. J. Aqueous batteries as grid scale energy storage solutions. Renew. Sustainable Energy Rev. 2017, 68, 1174–1182.

[151]

Xu, J. J.; Ji, X.; Zhang, J. X.; Yang, C. Y.; Wang, P. F.; Liu, S. F.; Ludwig, K.; Chen, F.; Kofinas, P.; Wang, C. S. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4| | Li4Ti5O12 pouch cells. Nat. Energy 2022, 7, 186–193.

[152]

Zhang, H.; Liu, X.; Li, H. H.; Hasa, I.; Passerini, S. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 598–616.

[153]

Huggins, R. A. Review—A new class of high rate, long cycle life, aqueous electrolyte battery electrodes. J. Electrochem. Soc. 2017, 164, A5031–A5036.

[154]

Sun, T. J.; Zheng, S. B.; Du, H. H.; Tao, Z. L. Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 2021, 13, 204.

[155]

Xu, J. J.; Wang, C. S. Perspective-electrolyte design for aqueous batteries: From ultra-high concentration to low concentration? J. Electrochem. Soc. 2022, 169, 030530.

Nano Research
Pages 2311-2324
Cite this article:
Chen Z, Wang K, Pei P, et al. Advances in electrolyte safety and stability of ion batteries under extreme conditions. Nano Research, 2023, 16(2): 2311-2324. https://doi.org/10.1007/s12274-022-4871-x
Topics:

1143

Views

18

Crossref

18

Web of Science

18

Scopus

2

CSCD

Altmetrics

Received: 18 July 2022
Revised: 03 August 2022
Accepted: 05 August 2022
Published: 06 September 2022
© Tsinghua University Press 2022
Return