Graphical Abstract

Theranostic nanodrugs combining magnetic resonance imaging (MRI) and cancer therapy have attracted extensive interest in cancer diagnosis and treatment. Herein, a manganese (Mn)-doped mesoporous polydopamine (Mn-MPDA) nanodrug incorporating the nitric oxide (NO) prodrug BNN6 and immune agonist R848 was developed. The nanodrug responded to the H+ and glutathione being enriched in tumor microenvironment to release R848 and Mn2+. The abundant Mn2+ produced through a Fenton-like reaction enabled a highly sensitive T1-T2 dual-mode MRI for monitoring the tumor accumulation process of the nanodrug, based on which an MRI-guided laser irradiation was achieved to trigger the NO gas therapy. Meanwhile, R848 induced the re-polarization of tumor-promoting M2-like macrophage to a tumoricidal M1 phenotype. Consequently, a potent synergistic antitumor effect was realized in mice bearing subcutaneous 4T1 breast cancer, which manifested the great promise of this multifunctional nanoplatform in cancer treatment.
Zhou, Z. J.; Bai, R. L.; Munasinghe, J.; Shen, Z. Y.; Nie, L. M.; Chen, X. Y. T1-T2 dual-modal magnetic resonance imaging: From molecular basis to contrast agents. ACS Nano 2017, 11, 5227–5232.
Glunde, K.; Artemov, D.; Penet, M. F.; Jacobs, M. A.; Bhujwalla, Z. M. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem. Rev. 2010, 110, 3043–3059.
Zhou, Z. J.; Yang, L. J.; Gao, J. H.; Chen, X. Y. Structure–relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv. Mater. 2019, 31, e1804567.
Yang, M. D.; Ho, C. H.; Ruta, S.; Chantrell, R.; Krycka, K.; Hovorka, O.; Chen, F. R.; Lai, P. S.; Lai, C. H. Magnetic interaction of multifunctional core–shell nanoparticles for highly effective theranostics. Adv. Mater. 2018, 30, e1802444.
Pablico-Lansigan, M. H.; Situ, S. F.; Samia, A. C. Magnetic particle imaging: Advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 2013, 5, 4040–4055.
Zhou, Z. J.; Huang, D. T.; Bao, J. F.; Chen, Q. L.; Liu, G.; Chen, Z.; Chen, X. Y.; Gao, J. H. A synergistically enhanced T1-T2 dual-modal contrast agent. Adv. Mater. 2012, 24, 6223–6228.
Bhooshan, N.; Giger, M.; Lan, L.; Li, H.; Marquez, A.; Shimauchi, A.; Newstead, G. M. Combined use of T2-weighted MRI and T1-weighted dynamic contrast-enhanced MRI in the automated analysis of breast lesions. Magn. Reson. Med. 2011, 66, 555–564.
Gong, H.; Dong, Z. L.; Liu, Y. M.; Yin, S. N.; Cheng, L.; Xi, W. Y.; Xiang, J.; Liu, K.; Li, Y. G.; Liu, Z. Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv. Funct. Mater. 2014, 24, 6492–6502.
Krogsgaard, M.; Behrens, M. A.; Pedersen, J. S.; Birkedal, H. Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 2013, 14, 297–301.
Guo, L. Q.; Liu, Q.; Li, G. L.; Shi, J. B.; Liu, J. Y.; Wang, T.; Jiang, G. B. A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. Nanoscale 2012, 4, 5864–5867.
Wu, D.; Duan, X. H.; Guan, Q. Q.; Liu, J.; Yang, X.; Zhang, F.; Huang, P.; Shen, J.; Shuai, X. T.; Cao, Z. Mesoporous polydopamine carrying manganese carbonyl responds to tumor microenvironment for multimodal imaging-guided cancer therapy. Adv. Funct. Mater. 2019, 29, 1900095.
Chen, L. C.; Zhou, S. F.; Su, L. C.; Song, J. B. Gas-mediated cancer bioimaging and therapy. ACS Nano 2019, 13, 10887–10917.
Xu, W. M.; Liu, L. Z.; Loizidou, M.; Ahmed, M.; Charles, I. G. The role of nitric oxide in cancer. Cell Res. 2002, 12, 311–320.
Khan, F. H.; Dervan, E.; Bhattacharyya, D. D.; McAuliffe, J. D.; Miranda, K. M.; Glynn, S. A. The role of nitric oxide in cancer: Master regulator or not? Int. J. Mol. Sci. 2020, 21, 9393.
Xu, J. S.; Zeng, F.; Wu, H.; Hu, C. P.; Yu, C. M.; Wu, S. Z. Preparation of a mitochondria-targeted and no-releasing nanoplatform and its enhanced pro-apoptotic effect on cancer cells. Small 2014, 10, 3750–3760.
Lee, J.; Hlaing, S. P.; Hasan, N.; Kwak, D.; Kim, H.; Cao, J. F.; Yoon, I. S.; Yun, H.; Jung, Y.; Yoo, J. W. Tumor-penetrable nitric oxide-releasing nanoparticles potentiate local antimelanoma therapy. ACS Appl. Mater. Interfaces 2021, 13, 30383–30396.
Szabo, C. Gasotransmitters in cancer: From pathophysiology to experimental therapy. Nat. Rev. Drug Discov. 2016, 15, 185–203.
Dou, Y.; Zhao, F. S.; Li, X.; Guo, Y. Y. Monitoring nitric oxide-induced hypoxic tumor radiosensitization by radiation-activated nanoagents under BOLD/DWI imaging. ACS Biomater. Sci. Eng. 2021, 7, 5242–5254.
Paul, S.; Pan, S.; Mukherjee, A.; De, P. Nitric oxide releasing delivery platforms: Design, detection, biomedical applications, and future possibilities. Mol. Pharm. 2021, 18, 3181–3205.
Li, S. H.; Liu, R.; Jiang, X. X.; Qiu, Y.; Song, X. R.; Huang, G. M.; Fu, N. Y.; Lin, L. S.; Song, J. B.; Chen, X. Y. et al. Near-infrared light-triggered sulfur dioxide gas therapy of cancer. ACS Nano 2019, 13, 2103–2113.
He, Q. J. Precision gas therapy using intelligent nanomedicine. Biomater. Sci. 2017, 5, 2226–2230.
Fan, J.; He, N. Y.; He, Q. J.; Liu, Y.; Ma, Y.; Fu, X.; Liu, Y. J.; Huang, P.; Chen, X. Y. A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. Nanoscale 2015, 7, 20055–20062.
Deng, Y. Y.; Jia, F.; Chen, S. Y.; Shen, Z. D.; Jin, Q.; Fu, G. S.; Ji, J. Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials 2018, 187, 55–65.
Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550.
Xiao, H.; Guo, Y.; Li, B.; Li, X. X.; Wang, Y.; Han, S. S.; Cheng, D.; Shuai, X. T. M2-like tumor-associated macrophage-targeted codelivery of STAT6 inhibitor and IKKβ siRNA induces M2-to-M1 repolarization for cancer immunotherapy with low immune side effects. ACS Cent. Sci. 2020, 6, 1208–1222.
Tang, X. Q.; Mo, C. F.; Wang, Y. S.; Wei, D. D.; Xiao, H. Y. Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 2013, 138, 93–104.
DeNardo, D. G.; Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 2019, 19, 369–382.
Nadeem, A.; Siddiqui, N.; Al-Harbi, N. O.; Al-Harbi, M. M.; Ahmad, S. F. TLR-7 agonist attenuates airway reactivity and inflammation through Nrf2-mediated antioxidant protection in a murine model of allergic asthma. Int. J. Biochem. Cell Biol. 2016, 73, 53–62.
Hemmi, H.; Kaisho, T.; Takeuchi, O.; Sato, S.; Sanjo, H.; Hoshino, K.; Horiuchi, T.; Tomizawa, H.; Takeda, K.; Akira, S. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 2002, 3, 196–200.
Lee, M.; Park, C. S.; Lee, Y. R.; Im, S. A.; Song, S.; Lee, C. K. Resiquimod, a TLR7/8 agonist, promotes differentiation of myeloid-derived suppressor cells into macrophages and dendritic cells. Arch. Pharm. Res. 2014, 37, 1234–1240.
Loré, K.; Betts, M. R.; Brenchley, J. M.; Kuruppu, J.; Khojasteh, S.; Perfetto, S.; Roederer, M.; Seder, R. A.; Koup, R. A. Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J. Immunol. 2003, 171, 4320–4328.
Wang, Y. K.; Liu, Y.; Wu, H. X.; Zhang, J. P.; Tian, Q. W.; Yang, S. P. Functionalized holmium-doped hollow silica nanospheres for combined sonodynamic and hypoxia-activated therapy. Adv. Funct. Mater. 2019, 29, 1805764.
Hao, Y. N.; Zheng, A. Q.; Guo, T. T.; Shu, Y.; Wang, J. H.; Johnson, O.; Chen, W. Glutathione triggered degradation of polydopamine to facilitate controlled drug release for synergic combinational cancer treatment. J. Mater. Chem. B 2019, 7, 6742–6750.
Ma, Z. W.; Xiang, X. Q.; Li, S. Y.; Xie, P.; Gong, Q.; Goh, B. C.; Wang, L. Z. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Semin. Cancer Biol. 2022, 80, 379–390.
Sung, Y. C.; Jin, P. R.; Chu, L. A.; Hsu, F. F.; Wang, M. R.; Chang, C. C.; Chiou, S. J.; Qiu, J. T.; Gao, D. Y.; Lin, C. C. et al. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat. Nanotechnol. 2019, 14, 1160–1169.
Ridnour, L. A.; Isenberg, J. S.; Espey, M. G.; Thomas, D. D.; Roberts, D. D.; Wink, D. A. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl. Acad. Sci. USA 2005, 102, 13147–13152.