AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Novel Zr-doped β-Li3PS4 solid electrolyte for all-solid-state lithium batteries with a combined experimental and computational approach

Junbo Zhang1,§Guoxi Zhu2,3,§Han Li1Jiangwei Ju2Jianwei Gu4Renzhuang Xu4Sumin Jin4Jianqiu Zhou1,4( )Bingbing Chen4( )
Department of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China

§ Junbo Zhang and Guoxi Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

Solid electrolyte of Zr-doped β-Li3PS4 exhibits high ionic conductivity and excellent electrochemical stability.

Abstract

All-solid-state lithium batteries (ASSLBs) are promising for safety and high-energy-density large-scale energy storage. In this contribution, we propose a Li3–4xZrxPS4 (LZPS) by Zr-doped β-Li3PS4 (LPS) as a novel solid electrolyte (SE) for ASSLBs based on experimental and simulation methods. The structure, electronic property, mechanical property, and ionic transport properties of LZPS (x = 0, 0.03, 0.06, and 0.1) are investigated with first-principles calculations. Meanwhile, LZPS is prepared by solid states reaction method. By combining experimental analysis and first-principles calculations, it is confirmed that a small amount of Zr4+ can be successfully doped into the framework of β-LPS composites without significantly compromising structural integrity. When the Zr4+ concentration is x = 0.03, the doped material Li2.88Zr0.03PS4 exhibits the highest ionic conductivity (5.1 × 10−4 S·cm−1) at 30 °C, and the Li-ion migration energy barrier is the lowest. The Li2.88Zr0.03PS4 SE has obtained the best mechanical properties, the good ductility, and shear deformation resistance, which can better maintain the structural stability of the battery. In addition, the Li/Li symmetrical cell is assembled, which shows excellent electrochemical stability of electrolyte against lithium. The constructed all-solid-state batteries (LiCoO2-Li6PS5Cl|Li2.88Zr0.03PS4|Li-In) delivers an initial discharge capacity of 130.4 mAh·g−1 at 0.2 C and a capacity retention of 85.1% after 100 cycles at room temperature. This study provides a promising electrolyte for the application of ASSLBs with high ionic conductivity and excellent stability against lithium.

Electronic Supplementary Material

Download File(s)
12274_2022_4880_MOESM1_ESM.pdf (452 KB)
12274_2022_4880_MOESM2_ESM.pdf (769.7 KB)

References

[1]

Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1939–1964.

[2]

Bieker, P.; Winter, M. Lithium-ionen-technologie und was danach kommen könnte: Hochenergieakkumulatoren. Teil 2 von 2. Chem. Unserer Zeit 2016, 50, 172–186.

[3]

Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

[4]

Hu, Y. S. Batteries: Getting solid. Nat. Energy 2016, 1, 16042.

[5]

Park, K. H.; Bai, Q.; Kim, D. H.; Oh, D. Y.; Zhu, Y. Z.; Mo, Y. F.; Jung, Y. S. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 2018, 8, 1800035.

[6]

Ghidiu, M.; Ruhl, J.; Culver, S. P.; Zeier, W. G. Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: A chemistry perspective. J. Mater. Chem. A 2019, 7, 17735–17753.

[7]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[8]

Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

[9]

Yang, Y. H.; Wu, Q.; Cui, Y. H.; Chen, Y. C.; Shi, S. Q.; Wang, R. Z.; Yan, H. Elastic properties, defect thermodynamics, electrochemical window, phase stability, and Li+ mobility of Li3PS4: Insights from first-principles calculations. ACS Appl. Mater. Interfaces 2016, 8, 25229–25242.

[10]

McGrogan, F. P.; Swamy, T.; Bishop, S. R.; Eggleton, E.; Porz, L.; Chen, X. W.; Chiang, Y. M.; Van Vliet, K. J. Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 2017, 7, 1602011.

[11]

Liu, Z. C.; Fu, W. J.; Payzant, E. A.; Yu, X.; Wu, Z. L.; Dudney, N. J.; Kiggans, J.; Hong, K. L.; Rondinone, A. J.; Liang, C. D. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 2013, 135, 975–978.

[12]

Tachez, M.; Malugani, J. P.; Mercier, R.; Robert, G. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ion. 1984, 14, 181–185.

[13]

Lewis, J. A.; Tippens, J.; Cortes, F. J. Q.; McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Trends Chem. 2019, 1, 845–857.

[14]

Zhang, Q.; Cao, D. X.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. L. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 2019, 31, 1901131.

[15]

Xiao, Y. H.; Wang, Y.; Bo, S. H.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2020, 5, 105–126.

[16]

Dixit, M. B.; Zaman, W.; Hortance, N.; Vujic, S.; Harkey, B.; Shen, F. Y.; Tsai, W. Y.; De Andrade, V.; Chen, X. C.; Balke, N. et al. Nanoscale mapping of extrinsic interfaces in hybrid solid electrolytes. Joule 2020, 4, 207–221.

[17]

Tian, H. K.; Chakraborty, A.; Talin, A. A.; Eisenlohr, P.; Qi, Y. Evaluation of the electrochemo-mechanically induced stress in all-solid-state Li-Ion batteries. J. Electrochem. Soc. 2020, 167, 090541.

[18]

Huang, B. W.; Zhang, J. B.; Shi, Y. T.; Lu, X. D.; Zhang, J. J.; Chen, B. B.; Zhou, J. Q.; Cai, R. Low Ca2+ concentration doping enhances the mechanical properties and ionic conductivity of Na3PS4 superionic conductors based on first-principles. Phys. Chem. Chem. Phys. 2020, 22, 19816–19822.

[19]

Zhang, N.; Wang, L.; Diao, Q. Y.; Zhu, K. Y.; Li, H.; Li, C. W.; Liu, X. J.; Xu, Q. Mechanistic insight into La2O3 dopants with high chemical stability on Li3PS4 sulfide electrolyte for lithium metal batteries. J. Electrochem. Soc. 2022, 169, 020544.

[20]

Zhou, L. D.; Assoud, A.; Shyamsunder, A.; Huq, A.; Zhang, Q.; Hartmann, P.; Kulisch, J.; Nazar, L. F. An entropically stabilized fast-ion conductor: Li3.25[Si0. 25P0. 75]S4. Chem. Mater. 2019, 31, 7801–7811.

[21]

Nonemacher, J. F.; Arinicheva, Y.; Yan, G.; Finsterbusch, M.; Krüger, M.; Malzbender, J. Fracture toughness of single grains and polycrystalline Li7La3Zr2O12 electrolyte material based on a pillar splitting method. J. Eur. Ceram. Soc. 2020, 40, 3057–3064.

[22]

Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[23]

Perdew, J. P.; Yue, W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B 1986, 33, 8800–8802.

[24]

Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange–correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539.

[25]

Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[26]

Shi, S. Q.; Lu, P.; Liu, Z. Y.; Qi, Y.; Hector, L. G.; Li, H.; Harris, S. J. Direct calculation of Li-Ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 2012, 134, 15476–15487.

[27]

Wang, Y. T.; Ju, J. W.; Dong, S. M.; Yan, Y. Y.; Jiang, F.; Cui, L. F.; Wang, Q. L.; Han, X. Q.; Cui, G. L. Facile design of sulfide-based all solid-state lithium metal battery: In situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 2021, 31, 2101523.

[28]

Zhang, Y. B.; Chen, K.; Shen, Y.; Lin, Y. H.; Nan, C. W. Synergistic effect of processing and composition x on conductivity of xLi2S-(100 − x)P2S5 electrolytes. Solid State Ion. 2017, 305, 1–6.

[29]

Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. High lithium ion conducting glass–ceramics in the system Li2S-P2S5. Solid State Ion. 2006, 177, 2721–2725.

[30]

Kim, J. S.; Jeon, M.; Kim, S.; Lee, J. H.; Kim, B. K.; Kim, H. Structural and electronic descriptors for atmospheric instability of Li-thiophosphate using density functional theory. Solid State Ion. 2020, 346, 115225.

[31]

Lewis, J. A.; Cortes, F. J. Q.; Boebinger, M. G.; Tippens, J.; Marchese, T. S.; Kondekar, N.; Liu, X. M.; Chi, M. F.; McDowell, M. T. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 2019, 4, 591–599.

[32]

Beckstein, O.; Klepeis, J. E.; Hart, G. L. W.; Pankratov, O. First-principles elastic constants and electronic structure of α-Pt2Si and PtSi. Phys. Rev. B 2001, 63, 134112.

[33]

Xie, Y.; Yu, H. T.; Yi, T. F.; Zhu, Y. R. Understanding the thermal and mechanical stabilities of olivine-type LiMPO4 (M = Fe and Mn) as cathode materials for rechargeable lithium batteries from first principles. ACS Appl. Mater. Interfaces 2014, 6, 4033–4042.

[34]

Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349–354.

[35]

Maxisch, T.; Ceder, G. Elastic properties of olivine LixFePO4 from first principles. Phys. Rev. B 2006, 73, 174112.

[36]

Vitos, L.; Korzhavyi, P. A.; Johansson, B. Elastic property maps of austenitic stainless steels. Phys. Rev. Lett. 2002, 88, 155501.

[37]

Wang, X. L.; Xiao, R. J.; Li, H.; Chen, L. Q. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte. Phys. Chem. Chem. Phys. 2016, 18, 21269–21277.

[38]

Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

[39]

Hakari, T.; Hayashi, A.; Tatsumisago, M. Li2S-based solid solutions as positive electrodes with full utilization and superlong cycle life in all-solid-state Li/S batteries. Adv. Sustainable Syst. 2017, 1, 1700017.

[40]

Xie, D. J.; Chen, S. J.; Zhang, Z. H.; Ren, J.; Yao, L. L.; Wu, L. B.; Yao, X. Y.; Xu, X. X. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against li for all-solid-state lithium batteries. J. Power Sources 2018, 389, 140–147.

Nano Research
Pages 3516-3523
Cite this article:
Zhang J, Zhu G, Li H, et al. Novel Zr-doped β-Li3PS4 solid electrolyte for all-solid-state lithium batteries with a combined experimental and computational approach. Nano Research, 2023, 16(2): 3516-3523. https://doi.org/10.1007/s12274-022-4880-9
Topics:

988

Views

3

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 01 June 2022
Revised: 26 July 2022
Accepted: 07 August 2022
Published: 22 September 2022
© Tsinghua University Press 2022
Return