Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Lanthanides (Ln3+) doped luminescent materials play critical roles in lighting and display techniques. While increasing experimental and theoretical research have been carried out on aluminate-based phosphors for white light-emitting diodes (WLEDs) over the past decades, most investigation was mainly focused on their luminescent properties; therefore, the local structure of the light emission center remains unclear. Especially, doping-induced local composition and structure modification around the luminescent centers have yet to be unveiled. In this study, we use advanced electron microscopy techniques including electron diffraction (ED), high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), in combination with energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS), to reveal atomically resolved crystalline and chemical structure of Ce3+ doped CaYAlO4. The microscopic results prove substantial microstructural and compositional inhomogeneities in Ce3+ doped CaYAlO4, especially the appearance of Ce dopant clustering and Ce3+/Ce4+ valence variation. Our research provides a new understanding the structure of Ln3+ doped luminescent materials and will facilitate the materials design for next-generation WLEDs luminescent materials.
Qiao, J. W.; Ning, L. X.; Molokeev, M. S.; Chuang, Y. C.; Zhang, Q. Y.; Poeppelmeier, K. R.; Xia, Z. G. Site-selective occupancy of Eu2+ toward blue-light-excited red emission in a Rb3YSi2O7: Eu phosphor. Angew. Chem., Int. Ed. 2019, 58, 11521–11526.
Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603.
You, S. H.; Li, S. X.; Jia, Y. C.; Xie, R. J. Interstitial site engineering for creating unusual red emission in La3Si6N11: Ce3+. Chem. Mater. 2020, 32, 3631–3640.
Sato, Y.; Kato, H.; Kobayashi, M.; Masaki, T.; Yoon, D. H.; Kakihana, M. Tailoring of deep-red luminescence in Ca2SiO4: Eu2+. Angew. Chem., Int. Ed. 2014, 53, 7756–7759.
Berends, A. C.; van de Haar, M. A.; Krames, M. R. YAG: Ce3+ phosphor: From micron-sized workhorse for general lighting to a bright future on the nanoscale.
Pust, P.; Weiler, V.; Hecht, C.; Tücks, A.; Wochnik, A. S.; Henß, A. K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W. Narrow-band red-emitting Sr[LiAl3N4]: Eu2+ as a next-generation LED-phosphor material. Nat. Mater. 2014, 13, 891–896.
Zhuo, Y.; Hariyani, S.; Zhong, J. Y.; Brgoch, J. Creating a green-emitting phosphor through selective rare-earth site preference in NaBaB9O15: Eu2+. Chem. Mater. 2021, 33, 3304–3311.
Fang, M. H.; Lin, J. C.; Huang, W. T.; Majewska, N.; Barzowska, J.; Mahlik, S.; Pang, W. K.; Lee, J. F.; Sheu, H. S.; Liu, R. S. Linking macro- and micro-structural analysis with luminescence control in oxynitride phosphors for light-emitting diodes. Chem. Mater. 2021, 33, 7897–7904.
Qiao, J. W.; Zhou, Y. Y.; Molokeev, M. S.; Zhang, Q. Y.; Xia, Z. G. Narrow bandwidth luminescence in Sr2Li(Al, Ga)O4: Eu2+ by selective site occupancy engineering for high definition displays. Laser Photon. Rev. 2021, 15, 2100392.
Yang, Z. Y.; Liu, G. C.; Zhao, Y. F.; Zhou, Y. Y.; Qiao, J. W.; Molokeev, M. S.; Swart, H. C.; Xia, Z. G. Competitive site occupation toward improved quantum efficiency of SrLaScO4: Eu red phosphors for warm white LEDs. Adv. Opt. Mater. 2022, 10, 2102373.
Hirosaki, N.; Xie, R. J.; Kimoto, K.; Sekiguchi, T.; Yamamoto, Y.; Suehiro, T.; Mitomo, M. Characterization and properties of green-emitting β-SiAlON: Eu2+ powder phosphors for white light-emitting diodes. Appl. Phys. Lett. 2005, 86, 211905.
Takeda, T.; Hirosaki, N.; Xie, R. J.; Kimoto, K.; Saito, M. Anomalous Eu layer doping in Eu, Si co-doped aluminium nitride based phosphor and its direct observation. J. Mater. Chem. 2010, 20, 9948–9953.
Xu, F. F.; Sourty, E.; Shi, W.; Mou, X. L.; Zhang, L. L. Direct observation of rare-earth ions in α-Sialon: Ce phosphors. Inorg. Chem. 2011, 50, 2905–2910.
Ida, S.; Koga, S.; Daio, T.; Hagiwara, H.; Ishihara, T. Direct imaging of light emission centers in two-dimensional crystals and their luminescence and photocatalytic properties. Angew. Chem., Int. Ed. 2014, 53, 13078–13082.
Li, G. G.; Lin, C. C.; Chen, W. T.; Molokeev, M. S.; Atuchin, V. V.; Chiang, C. Y.; Zhou, W. Z.; Wang, C. W.; Li, W. H.; Sheu, H. S. et al. Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms. Chem. Mater. 2014, 26, 2991–3001.
George, N. C.; Pell, A. J.; Dantelle, G.; Page, K.; Llobet, A.; Balasubramanian, M.; Pintacuda, G.; Chmelka, B. F.; Seshadri, R. Local environments of dilute activator ions in the solid-state lighting phosphor Y3−xCexAl5O12. Chem. Mater. 2013, 25, 3979–3995.
Watanabe, H.; Kijima, N. Crystal structure and luminescence properties of SrxCa1−xAlSiN3: Eu2+ mixed nitride phosphors. J. Alloys Compd. 2009, 475, 434–439.
Zhou, L.; Hong, J. Y.; Li, X. H.; Shi, J. X.; Tanner, P. A.; Wong, K. L.; Wu, M. M. Bright green emitting CaYAlO4: Tb3+, Ce3+ phosphor: Energy transfer and 3D-printing artwork. Adv. Opt. Mater. 2020, 8, 2000523.
Zhang, Y.; Li, X. J.; Li, K.; Lian, H. Z.; Shang, M. M.; Lin, J. Crystal-site engineering control for the reduction of Eu3+ to Eu2+ in CaYAlO4: Structure refinement and tunable emission properties. ACS Appl. Mater. Interfaces 2015, 7, 2715–2725.
Zhang, D. L.; Zhu, Y. H.; Liu, L. M.; Ying, X. R.; Hsiung, C. E.; Sougrat, R.; Li, K.; Han, Y. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 2018, 359, 675–679.
Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; Van Dyck, D. Advanced electron microscopy for advanced materials. Adv. Mater. 2012, 24, 5655–5675.
Zhou, W.; Oxley, M. P.; Lupini, A. R.; Krivanek, O. L.; Pennycook, S. J.; Idrobo, J. C. Single atom microscopy. Microsc. Microanal. 2012, 18, 1342–1354.
Wei, J. K.; Feng, B.; Ishikawa, R.; Yokoi, T.; Matsunaga, K.; Shibata, N.; Ikuhara, Y. Direct imaging of atomistic grain boundary migration. Nat. Mater. 2021, 20, 951–955.
Ishikawa, R.; Lupini, A. R.; Oba, F.; Findlay, S. D.; Shibata, N.; Taniguchi, T.; Watanabe, K.; Hayashi, H.; Sakai, T.; Tanaka, I. et al. Atomic structure of luminescent centers in high-efficiency Ce-doped w-AlN single crystal. Sci. Rep. 2014, 4, 3778.
Xiong, P. X.; Huang, B. L.; Peng, D. F.; Viana, B.; Peng, M. Y.; Ma, Z. J. Self-recoverable mechanically induced instant luminescence from Cr3+-doped LiGa5O8. Adv. Funct. Mater. 2021, 31, 2010685.
Kim, Y. H.; Arunkumar, P.; Kim, B. Y.; Unithrattil, S.; Kim, E.; Moon, S. H.; Hyun, J. Y.; Kim, K. H.; Lee, D.; Lee, J. S. et al. A zero-thermal-quenching phosphor. Nat. Mater. 2017, 16, 543–550.
Huang, K. W.; Chen, W. T.; Chu, C. I.; Hu, S. F.; Sheu, H. S.; Cheng, B. M.; Chen, J. M.; Liu, R. S. Controlling the activator site to tune europium valence in oxyfluoride phosphors. Chem. Mater. 2012, 24, 2220–2227.
Bai, G. X.; Yuan, S. G.; Zhao, Y. D.; Yang, Z. B.; Choi, S. Y.; Chai, Y.; Yu, S. F.; Lau, S. P.; Hao, J. H. 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence. Adv. Mater. 2016, 28, 7472–7477.
Hÿtch, M. J.; Putaux, J. L.; Pénisson, J. M. Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 2003, 423, 270–273.
Smeaton, M. A.; El Baggari, I.; Balazs, D. M.; Hanrath, T.; Kourkoutis, L. F. Mapping defect relaxation in quantum dot solids upon in situ heating. ACS Nano 2021, 15, 719–726.
Tizei, L. H. G.; Nakanishi, R.; Kitaura, R.; Shinohara, H.; Suenaga, K. Core-level spectroscopy to probe the oxidation state of single europium atoms. Phys. Rev. Lett. 2015, 114, 197602.
Turner, S.; Lazar, S.; Freitag, B.; Egoavil, R.; Verbeeck, J.; Put, S.; Strauven, Y.; Van Tendeloo, G. High resolution mapping of surface reduction in ceria nanoparticles. Nanoscale 2011, 3, 3385–3390.