AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-adaptive non-covalent albumin-binding near-infrared probe conjugates enabling precise sentinel lymph node metastasis illumination and primary tumor imaging

Qiu Wang1,§Qikun Jiang1,§Dan Li1Chang Li1Yao Feng2Zimeng Yang1Zhonggui He1Cong Luo1( )Jin Sun1( )
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
Kangya of Ningxia Pharmaceutical Co., Ltd, Yinchuan 750000, China

§ Qiu Wang and Qikun Jiang contributed equally to this work.

Show Author Information

Graphical Abstract

Schematic representation of IR820-FA derivatives bound to albumin in vivo for sentinel lymph node metastasis and tumor imaging.

Abstract

Tumor sentinel lymph node (SLN) metastasis plays a vital role in tumor staging and therapeutic decision-making process. However, precise diagnosis of primary tumors and lymphatic metastases is still hindered by low imaging resolution and poor photostability of fluorescent probes. Herein, we report three novel IR820-fatty acid (FA) conjugates (IR-OA, IR-LA, and IR-PA) for precise lymphatic metastasis illumination and primary tumor diagnosis. The IR-FA conjugates are able to non-covalently bound to albumin in vivo, and the fluorescence quantum yield is significantly enhanced after incubation with bovine serum albumin (BSA) in vitro. Moreover, the BSA-IR-FA conjugates display large Stokes shift (> 120 nm), dramatically improving in vivo imaging resolution. Among them, IR-PA demonstrates distinct advantage over IR-OA, IR-LA, and IR-maleimide (MAL) (fluorescent probe previously reported by our group) in terms of fluorescence quantum yield, photostability, and imaging resolution. As a result, IR-PA exhibits satisfactory imaging results with high fluorescence intensity and imaging resolution in sentinel lymph node metastasis illumination and primary tumor location. Our findings provide a self-adaptive albumin-binding near-infrared probe conjugate for accurate diagnosis of primary tumors and lymphatic metastases.

Electronic Supplementary Material

Download File(s)
12274_2022_4884_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30.

[2]

Yang, Y. Y.; Yu, Y. J.; Chen, H.; Meng, X. X.; Ma, W.; Yu, M.; Li, Z. Y.; Li, C. H.; Liu, H. L.; Zhang, X. D. et al. Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging. ACS Nano 2020, 14, 13536–13547.

[3]

Li, S. M.; Shan, X. Z.; Wang, Y. Q.; Chen, Q.; Sun, J.; He, Z. G.; Sun, B. J.; Luo, C. Dimeric prodrug-based nanomedicines for cancer therapy. J. Control. Release 2020, 326, 510–522.

[4]

Wang, P. Y.; Li, J. Q.; Wei, M.; Yang, R. Q.; Lou, K. L.; Dang, Y. Y.; Sun, W.; Xue, F. Q.; Liu, X. L. Tumor-microenvironment triggered signal-to-noise boosting nanoprobes for NIR-IIb fluorescence imaging guided tumor surgery and NIR-II photothermal therapy. Biomaterials 2022, 287, 121636.

[5]

Ling, M. J.; Sun, R.; Li, G.; Syeda, M. Z.; Ma, W.; Mai, Z. Y.; Shao, L. Q.; Tang, L. G.; Yu, Z. Q. NIR-II emissive dye based polymer nanoparticle targeting EGFR for oral cancer theranostics. Nano Res. 2022, 15, 6288–6296.

[6]

Ye, H.; Wang, K. Y.; Wang, M. L.; Liu, R. Z.; Song, H.; Li, N.; Lu, Q.; Zhang, W. J.; Du, Y. Q.; Yang, W. Q. et al. Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 2019, 206, 1–12.

[7]

Li, D.; Wang, Y. L.; Li, C.; Wang, Q.; Sun, B. J.; Zhang, H. T.; He, Z. G.; Sun, J. Cancer-specific calcium nanoregulator suppressing the generation and circulation of circulating tumor cell clusters for enhanced anti-metastasis combinational chemotherapy. Acta Pharm. Sin. B 2021, 11, 3262–3271.

[8]

Cai, W.; Fan, G. H.; Zhou, H.; Chen, L.; Ge, J. X.; Huang, B. X.; Zhou, D. D.; Zeng, J. F.; Miao, Q. Q.; Hu, C. H. Self-assembled hybrid nanocomposites for multimodal imaging-guided photothermal therapy of lymph node metastasis. ACS Appl. Mater. Interfaces 2020, 12, 49407–49415.

[9]

Fan, X. X.; Li, Y. R.; Feng, Z.; Chen, G. Q.; Zhou. J.; He, M. B.; Wu, L.; Li, S. L.; Qian, J.; Lin, H. Nanoprobes-assisted multichannel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes. Adv. Sci. 2021, 8, 2003972.

[10]

Hirano, A.; Kamimura, M.; Ogura, K.; Kim, N.; Hattori, A.; Setoguchi, Y.; Okubo, F.; Inoue, H.; Miyamoto, R.; Kinoshita, J. et al. A comparison of indocyanine green fluorescence imaging plus blue dye and blue dye alone for sentinel node navigation surgery in breast cancer patients. Ann. Surg. Oncol. 2012, 19, 4112–4116.

[11]

Jin, Y. T.; Yuan, L.; Zhang, Y.; Tang, P.; Yang, Y.; Fan, L. J.; Chen, L.; Qi, X. W.; Jiang, J. A prospective self-controlled study of indocyanine green, radioisotope, and methylene blue for combined imaging of axillary sentinel lymph nodes in breast cancer. Front. Oncol. 2022, 12, 803804.

[12]

Yu, L.; Wang, Z. J.; Mo, Z. M.; Zou, B. H.; Yang, Y. Y.; Sun, R.; Ma, W.; Yu, M.; Zhang, S. J.; Yu, Z. Q. Synergetic delivery of triptolide and Ce6 with light-activatable liposomes for efficient hepatocellular carcinoma therapy. Acta Pharm. Sin. B 2021, 11, 2004–2015.

[13]

Guo, M. C.; Song, H.; Li, K.; Ma, M. C.; Liu, Y.; Fu, Q.; He, Z. G. A new approach to developing diagnostics and therapeutics: Aggregation-induced emission-based fluorescence turn-on. Med. Res. Rev. 2020, 40, 27–53.

[14]

Wanderi, K.; Cui, Z. Q. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. Exploration 2022, 2, 20210097.

[15]

Ma, W.; Chen, Q. L.; Xu, W. G.; Yu, M.; Yang, Y. Y.; Zou, B. H.; Zhang, Y. S.; Ding, J. X.; Yu, Z. Q. Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. Nano Res. 2020, 14, 846–857.

[16]

Yang, Z.; Tian, R.; Wu, J. J.; Fan, Q. L.; Yung, B. C.; Niu, G.; Jacobson, O.; Wang, Z. T.; Liu, G.; Yu, G. C. et al. Impact of semiconducting perylene diimide nanoparticle size on lymph node mapping and cancer imaging. ACS Nano 2017, 11, 4247–4255.

[17]

Tian, R.; Ma, H. L.; Zhu, S. J.; Lau, J.; Ma, R.; Liu, Y. J.; Lin, L. S.; Chandra, S.; Wang, S.; Zhu, X. F. et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv. Mater. 2020, 32, 1907365.

[18]

Zhao, D.; Xu, M. H.; Yang, S. Y.; Ma, H. D.; Li, H. W.; Wu, R.; He, Y.; Wang, S. M.; Liang, X. L. Specific diagnosis of lymph node micrometastasis in breast cancer by targeting activatable near-infrared fluorescence imaging. Biomaterials 2022, 282, 121388.

[19]

Wang, Z. H.; Xia, H. M.; Chen, B. L.; Wang, Y. Q.; Yin, Q. Q.; Yan, Y.; Yang, Y.; Tang, M. M.; Liu, J. X.; Zhao, R. Y. et al. pH-amplified CRET nanoparticles for in vivo imaging of tumor metastatic lymph nodes. Angew. Chem., Int. Ed. 2021, 60, 14512–14520.

[20]

Du, B. L.; Qu, C. R.; Qian, K.; Ren, Y.; Li, Y. S.; Cui, X. H.; He, S. Q.; Wu, Y. F.; Ko, T.; Liu, R. Q. et al. An IR820 dye-protein complex for second near-infrared window and photoacoustic imaging. Adv. Opt. Mater. 2020, 8, 1901471.

[21]

Wang, H. L.; Li, X. X.; Tse, B. W. C.; Yang, H. T.; Thorling, C. A.; Liu, Y. X.; Touraud, M.; Chouane, J. B.; Liu, X.; Roberts, M. S. et al. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 2018, 8, 1227–1242.

[22]

Ding, K. L.; Zheng, C. X.; Sun, L. L.; Liu, X. X.; Yin, Y. Y.; Wang, L. NIR light-induced tumor phototherapy using ICG delivery system based on platelet-membrane-camouflaged hollow bismuth selenide nanoparticles. Chin. Chem. Lett. 2020, 31, 1168–1172.

[23]

Jiang, G. W.; Ren, T. B.; D’Este, E.; Xiong, M. Y.; Xiong, B.; Johnsson, K.; Zhang, X. B.; Wang. L.; Yuan, L. A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy. Nat. Commun. 2022, 13, 2264.

[24]

Liu, H. X.; Yan, N.; Bai, H. T.; Kwok, R. T. K.; Tang, B. Z. Aggregation-induced emission luminogens for augmented photosynthesis. Exploration 2022, 2, 20210053.

[25]

Abdallah, M.; Müllertz, O. O.; Styles, I. K.; Mörsdorf, A.; Quinn, J. F.; Whittaker, M. R.; Trevaskis, N. L. Lymphatic targeting by albumin-hitchhiking: Applications and optimization. J. Control. Release 2020, 327, 117–128.

[26]

Li, C.; Wang, X.; Song, H.; Deng, S.; Li, W.; Li, J.; Sun, J. Current multifunctional albumin-based nanoplatforms for cancer multi-mode therapy. Asian J. Pharm. Sci. 2020, 15, 1–12.

[27]

Wang, Y.; Lang, L. X.; Huang, P.; Wang, Z.; Jacobson, O.; Kiesewetter, D. O.; Ali, I. U.; Teng, G. J.; Niu, G.; Chen, X. Y. In vivo albumin labeling and lymphatic imaging. Proc. Natl. Acad. Sci. USA 2015, 112, 208–213.

[28]

Zhang, W. J.; Song, S. C.; Wang, H. X.; Wang. Q.; Li, D.; Zheng, S. Z.; Xu, Z. Y.; Zhang, H. T.; Wang, J.; Sun, J. In vivo irreversible albumin-binding near-infrared dye conjugate as a naked-eye and fluorescence dual-mode imaging agent for lymph node tumor metastasis diagnosis. Biomaterials 2019, 217, 119279.

[29]

Zhu, T. T.; Zhang, Y.; Luo, X. A.; Wang, S. Z.; Jia, M. Q.; Chen, Z. X. Difference in binding of long- and medium-chain fatty acids with serum albumin: The role of macromolecular crowding effect. J. Agric. Food Chem. 2018, 66, 1242–1250.

[30]

Callmann, C. E.; LeGuyader, C. L. M.; Burton, S. T.; Thompson, M. P.; Hennis, R.; Barback, C.; Henriksen, N. M.; Chan, W. C.; Jaremko, M. J.; Yang, J. et al. Antitumor activity of 1, 18-octadecanedioic acid-paclitaxel complexed with human serum albumin. J. Am. Chem. Soc. 2019, 141, 11765–11769.

[31]

Zhang, H. Y.; Li, Q.; Liu, R. L.; Zhang, X. K.; Li, Z. H.; Luan, Y. X. A versatile prodrug strategy to in situ encapsulate drugs in MOF nanocarriers: A case of cytarabine-IR820 prodrug encapsulated ZIF-8 toward chemo-photothermal therapy. Adv. Funct. Mater. 2018, 28, 1802830.

[32]

Wang, Q.; Sun, M. C.; Li, C.; Li, D.; Yang, Z. M.; Jiang, Q. K.; He, Z. G.; Ding, H. W.; Sun, J. A computer-aided chem-photodynamic drugs self-delivery system for synergistically enhanced cancer therapy. Asian J. Pharm. Sci. 2021, 16, 203–212.

[33]

Wang, Q.; Fan, J. W.; Bian, X. Y.; Yao, H.; Yuan, X. H.; Han, Y.; Yan, C. G. A microenvironment sensitive pillar[5]arene-based fluorescent probe for cell imaging and drug delivery. Chin. Chem. Lett. 2022, 33, 1979–1982.

[34]

Zhu, T.; Du, J. J.; Cao, W. B.; Fan, J. L.; Peng, X. J. Microenvironment-sensitive fluorescent dyes for recognition of serum albumin in urine and imaging in living cells. Ind. Eng. Chem. Res. 2016, 55, 527–533.

[35]

Shen, P.; Hua, J. Y.; Jin, H. D.; Du, J. Y.; Liu, C. L.; Yang, W.; Gao, Q. Y.; Luo, H. J.; Liu, Y.; Yang, C. Y. Recognition and quantification of HSA: A fluorescence probe across α-helices of site I and site II. Sens. Actuators B Chem. 2017, 247, 587–594.

[36]

Du, J. J.; Zhu, T.; Gu, Q. Y.; Cao, W. B.; Fan, J. L.; Peng, X. J. Fabrication of artificial fluorescent protein probe for HSA recognition and relay sensing Ag+ by functional microenvironment-sensitive fluorescent dye. Sens. Actuators B Chem. 2018, 263, 661–667.

[37]

Wang, Q.; Sun, M. C.; Li, D.; Li, C.; Luo, C.; Wang, Z. M.; Zhang, W. J.; Yang, Z. M.; Feng, Y.; Wang, S. et al. Cytochrome P450 enzyme-mediated auto-enhanced photodynamic cancer therapy of co-nanoassembly between clopidogrel and photosensitizer. Theranostics 2020, 10, 5550–5564.

[38]

Gao, S.; Wei, G. G.; Zhang, S. H.; Zheng, B. B.; Xu, J. J.; Chen, G. X.; Li, M. W.; Song, S. L.; Fu, W.; Xiao, Z. Y. et al. Albumin tailoring fluorescence and photothermal conversion effect of near-infrared-II fluorophore with aggregation-induced emission characteristics. Nat. Commun. 2019, 10, 2206.

Nano Research
Pages 3010-3020
Cite this article:
Wang Q, Jiang Q, Li D, et al. Self-adaptive non-covalent albumin-binding near-infrared probe conjugates enabling precise sentinel lymph node metastasis illumination and primary tumor imaging. Nano Research, 2023, 16(2): 3010-3020. https://doi.org/10.1007/s12274-022-4884-5
Topics:

878

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 10 July 2022
Revised: 06 August 2022
Accepted: 07 August 2022
Published: 12 September 2022
© Tsinghua University Press 2022
Return