AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Superomniphobic surfaces for easy-removals of environmental-related liquids after icing and melting

Lizhong WangZe TianXiao LuoChanghao ChenGuochen JiangXinyu HuRui PengHongjun ZhangMinlin Zhong( )
Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

The specially designed superomniphobic surfaces realize the easy-removals of environmental-related liquids after icing and melting, and their capability for large-scale fabrications greatly prompts applications in practical occasions from transportation and telecommunications to energy and biomedicine.

Abstract

Superhydrophobic surfaces often lose the easy-removal ability of liquids during icing & melting cycles due to the impalement phenomena of air pockets. Especially for the most common mixed liquids in normal life, their difficult-removals after icing and melting have brought colossal troubles in the fields of aviation, energy, biomedicine, etc. Here we adopt the ultrafast laser to fabricate the optimal micro-nanostructured surfaces, realizing excellent superomniphobicity for seven environmental-related liquids. It is demonstrated that different droplets on the surfaces recover well to the original Cassie-Baxter state after melting, and can be removed easily at low tilted angles. The ice adhesion strengths of the seven liquids as low as 5 kPa and the micro-nanostructure durability ensure the long-term easy-removal after icing. Compared with the ice adhesion strength of untreated surfaces (264.4 ± 17.6 kPa), those of our designed surfaces have decreased by over 50 times. Icing and melting processes are investigated to reveal the easy-removal mechanisms that specifically distributed solutes and bubbles after icing impact downwards significantly to accelerate the recovery of the Cassie–Baxter state during melting. A series of environmental-related durability experiments including continuous icing & melting cycles, long-term salt spray, and high-pressure water jet impact further demonstrate the surfaces promising for real applications.

Electronic Supplementary Material

Video
12274_2022_4887_MOESM1_ESM.mp4
12274_2022_4887_MOESM2_ESM.mp4
12274_2022_4887_MOESM3_ESM.mp4
12274_2022_4887_MOESM4_ESM.mp4
Download File(s)
12274_2022_4887_MOESM1_ESM.pdf (5.1 MB)

References

[1]

Guerra, R. E.; Kelleher, C. P.; Hollingsworth, A. D.; Chaikin, P. M. Freezing on a sphere. Nature 2018, 554, 346–350.

[2]

Stephenson, J. L. Caution in the use of liquid propane for freezing biological specimens. Nature 1954, 174, 235.

[3]

Gent, R. W.; Dart, N. P.; Cansdale, J. T. Aircraft icing. Philos. Trans. Roy. Soc. A Math., Phys. Eng. Sci. 2000, 358, 2873–2911.

[4]

Holland, D. M.; Nicholls, K. W.; Basinski, A. The southern ocean and its interaction with the antarctic ice sheet. Science 2020, 367, 1326–1330.

[5]

Marín, A. G.; Enríquez, O. R.; Brunet, P.; Colinet, P.; Snoeijer, J. H. Universality of tip singularity formation in freezing water drops. Phys. Rev. Lett. 2014, 113, 054301.

[6]

Deville, S.; Maire, E.; Bernard-Granger, G.; Lasalle, A.; Bogner, A.; Gauthier, C.; Leloup, J.; Guizard, C. Metastable and unstable cellular solidification of colloidal suspensions. Nat. Mater. 2009, 8, 966–972.

[7]

Lasalle, A.; Guizard, C.; Leloup, J.; Deville, S.; Maire, E.; Bogner, A.; Gauthier, C.; Adrien, J.; Courtois, L. Ice-templating of alumina suspensions: Effect of supercooling and crystal growth during the initial freezing regime. J. Am. Ceram. Soc. 2012, 95, 799–804.

[8]

Miao, Y. M.; Zhao, Y. G.; Gao, M.; Yang, L.; Yang, C. Characteristics of a freezing nanosuspension drop in two different schemes. Appl. Phys. Lett. 2022, 120, 091602.

[9]

Yang, Q. M.; Moradpour, N.; You, J. B.; Wang, D. H.; Tian, B. R.; Sun, S. F.; Liu, Q.; Deng, X.; Daniel, D.; Zhang, X. H. General mechanism and mitigation for strong adhesion of frozen oil sands on solid substrates. Fuel 2022, 325, 124797.

[10]

Watanabe, K.; Wake, T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Reg. Sci. Technol. 2009, 59, 34–41.

[11]

Cullen, D.; Baker, I. Observation of impurities in ice. Microsc. Res. Techn. 2001, 55, 198–207.

[12]

Zhang, L. F.; Liu, Z. X.; Zhang, M. H. Numerical simulation of ice accretion under mixed-phase conditions. Proc. Inst. Mech. Eng., Part G:J. Aerospace Eng. 2016, 230, 2473–2483.

[13]
Vercillo, V. Durable laser patterned metal surfaces with enhanced icephobic properties for aerospace applications. Ph. D. Dissertation, Technische Universität Dresden, Dresden, Germany, 2020.
[14]

Khadak, A.; Subeshan, B.; Asmatulu, R. Studies on de-icing and anti-icing of carbon fiber-reinforced composites for aircraft surfaces using commercial multifunctional permanent superhydrophobic coatings. J. Mater. Sci. 2021, 56, 3078–3094.

[15]

Alamri, S.; Vercillo, V.; Aguilar-Morales, A. I.; Schell, F.; Wetterwald, M.; Lasagni, A. F.; Bonaccurso, E.; Kunze, T. Self-limited ice formation and efficient de-icing on superhydrophobic micro-structured airfoils through direct laser interference patterning. Adv. Mater. Interfaces 2020, 7, 2001231.

[16]

Zang, D. Y.; Lin, K. J.; Wang, W. K.; Gu, Y. X.; Zhang, Y. L.; Geng, X. G.; Binks, B. P. Tunable shape transformation of freezing liquid water marbles. Soft Matter 2014, 10, 1309–1314.

[17]

Zhao, Y. G.; Yang, C.; Cheng, P. Freezing of a nanofluid droplet: From a pointy tip to flat plateau. Appl. Phys. Lett. 2021, 118, 141602.

[18]

Kreder, M. J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003.

[19]

Chatterjee, R.; Bararnia, H.; Anand, S. A family of frost-resistant and icephobic coatings. Adv. Mater. 2022, 34, 2109930.

[20]

Shrestha, B.; Ezazi, M.; Rad, V.; Maharjan, A.; Kwon, G. Frost delay of a water-absorbing surface with engineered wettability via nonfreezing water. Langmuir 2022, 38, 5787–5794.

[21]

Chen, X. S.; Wen, G.; Guo, Z. G. What are the design principles, from the choice of lubricants and structures to the preparation method, for a stable slippery lubricant-infused porous surface? Mater. Horiz. 2020, 7, 1697–1726.

[22]

Kota, A. K.; Kwon, G.; Tuteja, A. The design and applications of superomniphobic surfaces. NPG Asia Mater. 2014, 6, e109.

[23]

Liu, Y. H.; Moevius, L.; Xu, X. P.; Qian, T. Z.; Yeomans, J. M.; Wang, Z. K. Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 2014, 10, 515–519.

[24]

Pan, R.; Zhang, H. J.; Zhong, M. L. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication. ACS Appl. Mater. Interfaces 2021, 13, 1743–1753.

[25]

Tavakoli, F.; Kavehpour, P. H. Cold-induced spreading of water drops on hydrophobic surfaces. Langmuir 2015, 31, 2120–2126.

[26]

Irajizad, P.; Hasnain, M.; Farokhnia, N.; Sajadi, S. M.; Ghasemi, H. Magnetic slippery extreme icephobic surfaces. Nat. Commun. 2016, 7, 13395.

[27]

Li, Y. S.; Quéré, D.; Lv, C. J.; Zheng, Q. S. Monostable superrepellent materials. Proc. Natl. Acad. Sci. USA 2017, 114, 3387–3392.

[28]

Wang, P.; Yao, T.; Li, Z. Q.; Wei, W. D.; Xie, Q.; Duan, W.; Han, H. L. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite. Compos. Sci. Technol. 2020, 198, 108307.

[29]

Wang, P.; Wang, J.; Duan, W.; Li, C. Y.; Han, H. L.; Xie, Q. A superhydrophobic/electrothermal/photothermal synergistically anti-icing strategy with excellent self-healable and anti-abrasion property. J. Bionic Eng. 2021, 18, 1147–1156.

[30]

Wang, L. Z.; Tian, Z.; Jiang, G. C.; Luo, X.; Chen, C. H.; Hu, X. Y.; Zhang, H. J.; Zhong, M. L. Spontaneous dewetting transitions of droplets during icing & melting cycle. Nat. Commun. 2022, 13, 378.

[31]

Mangini, D.; Antonini, C.; Marengo, M.; Amirfazli, A. Runback ice formation mechanism on hydrophilic and superhydrophobic surfaces. Cold Reg. Sci. Technol. 2015, 109, 53–60.

[32]

Vercillo, V.; Tonnicchia, S.; Romano, J. M.; García-Girón, A.; Aguilar-Morales, A. I.; Alamri, S.; Dimov, S. S.; Kunze, T.; Lasagni, A. F.; Bonaccurso, E. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications. Adv. Funct. Mater. 2020, 30, 1910268.

[33]

Liu, Y.; Ma, L. Q.; Wang, W.; Kota, A. K.; Hu, H. An experimental study on soft PDMS materials for aircraft icing mitigation. Appl. Surf. Sci. 2018, 447, 599–609.

[34]

Chu, F. Q.; Gao, S. H.; Zhang, X.; Wu, X. M.; Wen, D. S. Droplet re-icing characteristics on a superhydrophobic surface. Appl. Phys. Lett. 2019, 115, 073703.

[35]

Wang, P.; Zhang, D.; Lu, Z. Advantage of super-hydrophobic surface as a barrier against atmospheric corrosion induced by salt deliquescence. Corros. Sci. 2015, 90, 23–32.

[36]

Rahimi, E.; Rafsanjani-Abbasi, A.; Davoodi, A.; Kiani-Rashid, A. Shape evolution of water and saline droplets during icing/melting cycles on superhydrophobic surface. Surf. Coat. Technol. 2018, 333, 201–209.

[37]

Rønneberg, S.; Laforte, C.; Volat, C.; He, J. Y.; Zhang, Z. L. The effect of ice type on ice adhesion. AIP Adv. 2019, 9, 055304.

[38]

Pan, R.; Cai, M. Y.; Liu, W. J.; Luo, X.; Chen, C. H.; Zhang, H. J.; Zhong, M. L. Extremely high cassie-baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro-nano structures. J. Mater. Chem. A 2019, 7, 18050–18062.

[39]
Chu, F. Q.; Zhang, X.; Li, S. K.; Jin, H. C.; Zhang, J.; Wu, X. M.; Wen, D. S. Bubble formation in freezing droplets. Phys. Rev. Fluids 2019, 4, 071601(R).
Nano Research
Pages 3267-3277
Cite this article:
Wang L, Tian Z, Luo X, et al. Superomniphobic surfaces for easy-removals of environmental-related liquids after icing and melting. Nano Research, 2023, 16(2): 3267-3277. https://doi.org/10.1007/s12274-022-4887-2
Topics:

740

Views

13

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 11 April 2022
Revised: 07 August 2022
Accepted: 09 August 2022
Published: 06 September 2022
© Tsinghua University Press 2022
Return