Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Superomniphobic surfaces for easy-removals of environmental-related liquids after icing and melting

Lizhong WangZe TianXiao LuoChanghao ChenGuochen JiangXinyu HuRui PengHongjun ZhangMinlin Zhong()
Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

View original image Download original image
The specially designed superomniphobic surfaces realize the easy-removals of environmental-related liquids after icing and melting, and their capability for large-scale fabrications greatly prompts applications in practical occasions from transportation and telecommunications to energy and biomedicine.

Abstract

Superhydrophobic surfaces often lose the easy-removal ability of liquids during icing & melting cycles due to the impalement phenomena of air pockets. Especially for the most common mixed liquids in normal life, their difficult-removals after icing and melting have brought colossal troubles in the fields of aviation, energy, biomedicine, etc. Here we adopt the ultrafast laser to fabricate the optimal micro-nanostructured surfaces, realizing excellent superomniphobicity for seven environmental-related liquids. It is demonstrated that different droplets on the surfaces recover well to the original Cassie-Baxter state after melting, and can be removed easily at low tilted angles. The ice adhesion strengths of the seven liquids as low as 5 kPa and the micro-nanostructure durability ensure the long-term easy-removal after icing. Compared with the ice adhesion strength of untreated surfaces (264.4 ± 17.6 kPa), those of our designed surfaces have decreased by over 50 times. Icing and melting processes are investigated to reveal the easy-removal mechanisms that specifically distributed solutes and bubbles after icing impact downwards significantly to accelerate the recovery of the Cassie–Baxter state during melting. A series of environmental-related durability experiments including continuous icing & melting cycles, long-term salt spray, and high-pressure water jet impact further demonstrate the surfaces promising for real applications.

Electronic Supplementary Material

Video
12274_2022_4887_MOESM1_ESM.mp4
12274_2022_4887_MOESM2_ESM.mp4
12274_2022_4887_MOESM3_ESM.mp4
12274_2022_4887_MOESM4_ESM.mp4
Download File(s)
12274_2022_4887_MOESM1_ESM.pdf (5.1 MB)

References

[1]

Guerra, R. E.; Kelleher, C. P.; Hollingsworth, A. D.; Chaikin, P. M. Freezing on a sphere. Nature 2018, 554, 346–350.

[2]

Stephenson, J. L. Caution in the use of liquid propane for freezing biological specimens. Nature 1954, 174, 235.

[3]

Gent, R. W.; Dart, N. P.; Cansdale, J. T. Aircraft icing. Philos. Trans. Roy. Soc. A Math., Phys. Eng. Sci. 2000, 358, 2873–2911.

[4]

Holland, D. M.; Nicholls, K. W.; Basinski, A. The southern ocean and its interaction with the antarctic ice sheet. Science 2020, 367, 1326–1330.

[5]

Marín, A. G.; Enríquez, O. R.; Brunet, P.; Colinet, P.; Snoeijer, J. H. Universality of tip singularity formation in freezing water drops. Phys. Rev. Lett. 2014, 113, 054301.

[6]

Deville, S.; Maire, E.; Bernard-Granger, G.; Lasalle, A.; Bogner, A.; Gauthier, C.; Leloup, J.; Guizard, C. Metastable and unstable cellular solidification of colloidal suspensions. Nat. Mater. 2009, 8, 966–972.

[7]

Lasalle, A.; Guizard, C.; Leloup, J.; Deville, S.; Maire, E.; Bogner, A.; Gauthier, C.; Adrien, J.; Courtois, L. Ice-templating of alumina suspensions: Effect of supercooling and crystal growth during the initial freezing regime. J. Am. Ceram. Soc. 2012, 95, 799–804.

[8]

Miao, Y. M.; Zhao, Y. G.; Gao, M.; Yang, L.; Yang, C. Characteristics of a freezing nanosuspension drop in two different schemes. Appl. Phys. Lett. 2022, 120, 091602.

[9]

Yang, Q. M.; Moradpour, N.; You, J. B.; Wang, D. H.; Tian, B. R.; Sun, S. F.; Liu, Q.; Deng, X.; Daniel, D.; Zhang, X. H. General mechanism and mitigation for strong adhesion of frozen oil sands on solid substrates. Fuel 2022, 325, 124797.

[10]

Watanabe, K.; Wake, T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Reg. Sci. Technol. 2009, 59, 34–41.

[11]

Cullen, D.; Baker, I. Observation of impurities in ice. Microsc. Res. Techn. 2001, 55, 198–207.

[12]

Zhang, L. F.; Liu, Z. X.; Zhang, M. H. Numerical simulation of ice accretion under mixed-phase conditions. Proc. Inst. Mech. Eng., Part G:J. Aerospace Eng. 2016, 230, 2473–2483.

[13]
Vercillo, V. Durable laser patterned metal surfaces with enhanced icephobic properties for aerospace applications. Ph. D. Dissertation, Technische Universität Dresden, Dresden, Germany, 2020.
[14]

Khadak, A.; Subeshan, B.; Asmatulu, R. Studies on de-icing and anti-icing of carbon fiber-reinforced composites for aircraft surfaces using commercial multifunctional permanent superhydrophobic coatings. J. Mater. Sci. 2021, 56, 3078–3094.

[15]

Alamri, S.; Vercillo, V.; Aguilar-Morales, A. I.; Schell, F.; Wetterwald, M.; Lasagni, A. F.; Bonaccurso, E.; Kunze, T. Self-limited ice formation and efficient de-icing on superhydrophobic micro-structured airfoils through direct laser interference patterning. Adv. Mater. Interfaces 2020, 7, 2001231.

[16]

Zang, D. Y.; Lin, K. J.; Wang, W. K.; Gu, Y. X.; Zhang, Y. L.; Geng, X. G.; Binks, B. P. Tunable shape transformation of freezing liquid water marbles. Soft Matter 2014, 10, 1309–1314.

[17]

Zhao, Y. G.; Yang, C.; Cheng, P. Freezing of a nanofluid droplet: From a pointy tip to flat plateau. Appl. Phys. Lett. 2021, 118, 141602.

[18]

Kreder, M. J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003.

[19]

Chatterjee, R.; Bararnia, H.; Anand, S. A family of frost-resistant and icephobic coatings. Adv. Mater. 2022, 34, 2109930.

[20]

Shrestha, B.; Ezazi, M.; Rad, V.; Maharjan, A.; Kwon, G. Frost delay of a water-absorbing surface with engineered wettability via nonfreezing water. Langmuir 2022, 38, 5787–5794.

[21]

Chen, X. S.; Wen, G.; Guo, Z. G. What are the design principles, from the choice of lubricants and structures to the preparation method, for a stable slippery lubricant-infused porous surface? Mater. Horiz. 2020, 7, 1697–1726.

[22]

Kota, A. K.; Kwon, G.; Tuteja, A. The design and applications of superomniphobic surfaces. NPG Asia Mater. 2014, 6, e109.

[23]

Liu, Y. H.; Moevius, L.; Xu, X. P.; Qian, T. Z.; Yeomans, J. M.; Wang, Z. K. Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 2014, 10, 515–519.

[24]

Pan, R.; Zhang, H. J.; Zhong, M. L. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication. ACS Appl. Mater. Interfaces 2021, 13, 1743–1753.

[25]

Tavakoli, F.; Kavehpour, P. H. Cold-induced spreading of water drops on hydrophobic surfaces. Langmuir 2015, 31, 2120–2126.

[26]

Irajizad, P.; Hasnain, M.; Farokhnia, N.; Sajadi, S. M.; Ghasemi, H. Magnetic slippery extreme icephobic surfaces. Nat. Commun. 2016, 7, 13395.

[27]

Li, Y. S.; Quéré, D.; Lv, C. J.; Zheng, Q. S. Monostable superrepellent materials. Proc. Natl. Acad. Sci. USA 2017, 114, 3387–3392.

[28]

Wang, P.; Yao, T.; Li, Z. Q.; Wei, W. D.; Xie, Q.; Duan, W.; Han, H. L. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite. Compos. Sci. Technol. 2020, 198, 108307.

[29]

Wang, P.; Wang, J.; Duan, W.; Li, C. Y.; Han, H. L.; Xie, Q. A superhydrophobic/electrothermal/photothermal synergistically anti-icing strategy with excellent self-healable and anti-abrasion property. J. Bionic Eng. 2021, 18, 1147–1156.

[30]

Wang, L. Z.; Tian, Z.; Jiang, G. C.; Luo, X.; Chen, C. H.; Hu, X. Y.; Zhang, H. J.; Zhong, M. L. Spontaneous dewetting transitions of droplets during icing & melting cycle. Nat. Commun. 2022, 13, 378.

[31]

Mangini, D.; Antonini, C.; Marengo, M.; Amirfazli, A. Runback ice formation mechanism on hydrophilic and superhydrophobic surfaces. Cold Reg. Sci. Technol. 2015, 109, 53–60.

[32]

Vercillo, V.; Tonnicchia, S.; Romano, J. M.; García-Girón, A.; Aguilar-Morales, A. I.; Alamri, S.; Dimov, S. S.; Kunze, T.; Lasagni, A. F.; Bonaccurso, E. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications. Adv. Funct. Mater. 2020, 30, 1910268.

[33]

Liu, Y.; Ma, L. Q.; Wang, W.; Kota, A. K.; Hu, H. An experimental study on soft PDMS materials for aircraft icing mitigation. Appl. Surf. Sci. 2018, 447, 599–609.

[34]

Chu, F. Q.; Gao, S. H.; Zhang, X.; Wu, X. M.; Wen, D. S. Droplet re-icing characteristics on a superhydrophobic surface. Appl. Phys. Lett. 2019, 115, 073703.

[35]

Wang, P.; Zhang, D.; Lu, Z. Advantage of super-hydrophobic surface as a barrier against atmospheric corrosion induced by salt deliquescence. Corros. Sci. 2015, 90, 23–32.

[36]

Rahimi, E.; Rafsanjani-Abbasi, A.; Davoodi, A.; Kiani-Rashid, A. Shape evolution of water and saline droplets during icing/melting cycles on superhydrophobic surface. Surf. Coat. Technol. 2018, 333, 201–209.

[37]

Rønneberg, S.; Laforte, C.; Volat, C.; He, J. Y.; Zhang, Z. L. The effect of ice type on ice adhesion. AIP Adv. 2019, 9, 055304.

[38]

Pan, R.; Cai, M. Y.; Liu, W. J.; Luo, X.; Chen, C. H.; Zhang, H. J.; Zhong, M. L. Extremely high cassie-baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro-nano structures. J. Mater. Chem. A 2019, 7, 18050–18062.

[39]
Chu, F. Q.; Zhang, X.; Li, S. K.; Jin, H. C.; Zhang, J.; Wu, X. M.; Wen, D. S. Bubble formation in freezing droplets. Phys. Rev. Fluids 2019, 4, 071601(R).
Nano Research
Pages 3267-3277
Cite this article:
Wang L, Tian Z, Luo X, et al. Superomniphobic surfaces for easy-removals of environmental-related liquids after icing and melting. Nano Research, 2023, 16(2): 3267-3277. https://doi.org/10.1007/s12274-022-4887-2
Topics:
Metrics & Citations  
Article History
Copyright
Return