Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Highly efficient and stable oxygen reduction reaction (ORR) electrocatalysts are remarkably important but challenging for advancing the large-scale commercialization of practical proton exchange membrane fuel cells (PEMFCs). In this work, we report that the introduction of interstitial hydrogen atoms into PtPd nanotubes can significantly promote ORR performance without scarifying the durability. The enhanced mass activity was 8.8 times higher than that of commercial Pt/C. The accelerated durability test showed negligible activity attenuation after 30,000 cycles. Additionally, H2/O2 fuel cell tests further verified the excellent activity of PtPd-H nanotubes with a maximum power density of 1.32 W·cm−2, superior to that of commercial Pt/C (1.16 W·cm−2). Density functional theory calculations demonstrated the incorporation of hydrogen atoms gives rise to the broadening of Pt d-band and the downshift of d-band center, which consequently leads to the weaker intermediates binding and enhanced ORR activity.
Stephens, I. E. L.; Rossmeisl, J.; Chorkendorff, I. Toward sustainable fuel cells. Science 2016, 354, 1378–1379.
Weydahl, H.; Gilljam, M.; Lian, T.; Johannessen, T. C.; Holm, S. I.; Hasvold, J. Ø. Fuel cell systems for long-endurance autonomous underwater vehicles—Challenges and benefits. Int. J. Hydrog. Energy 2020, 45, 5543–5553.
Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.
Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.
Hu, Y. M.; Zhu, M. Z.; Luo, X.; Wu, G.; Chao, T. T.; Qu, Y. T.; Zhou, F. Y.; Sun, R. B.; Han, X.; Li, H. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem., Int. Ed. 2021, 60, 6533–6538.
Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.
Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 134, e202115735.
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.
Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. H.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.
Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.
Wu, Z. P.; Caracciolo, D. T.; Maswadeh, Y.; Wen, J. G.; Kong, Z. J.; Shan, S. Y.; Vargas, J. A.; Yan, S.; Hopkins, E.; Park, K. et al. Alloying–realloying enabled high durability for Pt–Pd-3d-transition metal nanoparticle fuel cell catalysts. Nat. Commun. 2021, 12, 859.
Chen, S.; Zhao, J. K.; Su, H. Y.; Li, H. L.; Wang, H. L.; Hu, Z. P.; Bao, J.; Zeng, J. Pd–Pt tesseracts for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 496–503.
Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium–platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.
Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y. M.; Liu, P.; Vukmirovic, M. B.; Wang, J. X.; Adzic, R. R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem., Int. Ed. 2010, 49, 8602–8607.
Lu, B. A.; Shen, L. F.; Liu, J.; Zhang, Q. H.; Wan, L. Y.; Morris, D. J.; Wang, R. X.; Zhou, Z. Y.; Li, G.; Sheng, T. et al. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction. ACS Catal. 2020, 11, 355–363.
Guo, Q.; Chen, R. T.; Guo, J. P.; Qin, C.; Xiong, Z. T.; Yan, H. X.; Gao, W. B.; Pei, Q. J.; Wu, A. A.; Chen, P. Enabling semihydrogenation of alkynes to alkenes by using a calcium palladium complex hydride. J. Am. Chem. Soc. 2021, 143, 20891–20897.
Kobayashi, K.; Kobayashi, H.; Maesato, M.; Hayashi, M.; Yamamoto, T.; Yoshioka, S.; Matsumura, S.; Sugiyama, T.; Kawaguchi, S.; Kubota, Y. et al. Discovery of hexagonal structured Pd–B nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 6578–6582.
Chen, T. Y.; Ellis, I.; Hooper, T. J. N.; Liberti, E.; Ye, L.; Lo, B. T. W.; O’Leary, C.; Sheader, A. A.; Martinez, G. T.; Jones, L. et al. Interstitial boron atoms in the palladium lattice of an industrial type of nanocatalyst: Properties and structural modifications. J. Am. Chem. Soc. 2019, 141, 19616–19624.
Hong, J.; Bae, J. H.; Jo, H.; Park, H. Y.; Lee, S.; Hong, S. J.; Chun, H.; Cho, M. K.; Kim, J.; Kim, J. et al. Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature 2022, 603, 631–636.
Chen, T. Y.; Foo, C.; Tsang, S. C. E. Interstitial and substitutional light elements in transition metals for heterogeneous catalysis. Chem. Sci. 2021, 12, 517–532.
Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.
Ai, X.; Zou, X.; Chen, H.; Su, Y. T.; Feng, X. L.; Li, Q. J.; Liu, Y. P.; Zhang, Y.; Zou, X. X. Transition-metal-boron intermetallics with strong interatomic d–sp orbital hybridization for high-performance electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 3961–3965.
Vo Doan, T. T.; Wang, J. B.; Poon, K. C.; Tan, D. C. L.; Khezri, B.; Webster, R. D.; Su, H. B.; Sato, H. Theoretical modelling and facile synthesis of a highly active boron-doped palladium catalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 6842–6847.
Fan, J. C.; Wu, J. D.; Cui, X. Q.; Gu, L.; Zhang, Q. H.; Meng, F. Q.; Lei, B. H.; Singh, D. J.; Zheng, W. T. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 3645–3651.
Dekura, S.; Kobayashi, H.; Ikeda, R.; Maesato, M.; Yoshino, H.; Ohba, M.; Ishimoto, T.; Kawaguchi, S.; Kubota, Y.; Yoshioka, S. et al. The electronic state of hydrogen in the α phase of the hydrogen-storage material PdH(D)x: Does a chemical bond between palladium and hydrogen exist? Angew. Chem., Int. Ed. 2018, 57, 9823–9827.
Kim, J.; Kim, H.; Lee, W. J.; Ruqia, B.; Baik, H.; Oh, H. S.; Paek, S. M.; Lim, H. K.; Choi, C. H.; Choi, S. I. Theoretical and experimental understanding of hydrogen evolution reaction kinetics in alkaline electrolytes with Pt-based core–shell nanocrystals. J. Am. Chem. Soc. 2019, 141, 18256–18263.
Lu, Y. Z.; Wang, J.; Peng, Y. C.; Fisher, A.; Wang, X. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700919.
Shi, Y. F.; Schimmenti, R.; Zhu, S. Q.; Venkatraman, K.; Chen, R. H.; Chi, M. F.; Shao, M. H.; Mavrikakis, M.; Xia, Y. N. Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 2022, 144, 2556–2568.
Li, H. Q.; Zeng, R.; Feng, X. R.; Wang, H. S.; Xu, W. X.; Lu, X. Y.; Xie, Z. X.; Abruña, H. D. Oxidative stability matters: A case study of palladium hydride nanosheets for alkaline fuel cells. J. Am. Chem. Soc. 2022, 144, 8106–8114.
Lin, B. Q.; Wu, X.; Xie, L.; Kang, Y. Q.; Du, H. D.; Kang, F. Y.; Li, J.; Gan, L. Atomic imaging of subsurface interstitial hydrogen and insights into surface reactivity of palladium hydrides. Angew. Chem., Int. Ed. 2020, 59, 20348–20352.
Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.
Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L; Zheng, N. F.; Fu G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.
Xu, W. C.; Fan, G. L.; Chen, J. L.; Li, J. H.; Zhang, L.; Zhu, S. L.; Su, X. C.; Cheng, F. Y.; Chen, J. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem., Int. Ed. 2020, 59, 3511–3516.
Narayan, T. C.; Baldi, A.; Koh, A. L.; Sinclair, R.; Dionne, J. A. Reconstructing solute-induced phase transformations within individual nanocrystals. Nat. Mater. 2016, 15, 768–774.
Fan, J. C.; Cui, X. Q.; Yu, S. S.; Gu, L.; Zhang, Q. H.; Meng, F. Q.; Peng, Z. Q.; Ma, L. O.; Ma, J. Y.; Qi, K. et al. Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles. ACS Nano 2019, 13, 12987–12995.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Greeley, J.; Nørskov, J. K. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys. Surf. Sci. 2005, 592, 104–111.