AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Aligning Fe2O3 photo-sheets on TiO2 nanofibers with hydrophilic and aerophobic surface for boosting photoelectrochemical performance

Xiangyu Meng1,§Qi Zhan1,§Yanan Wu1,§Mengmeng Zhu1Ken Liu1Na Wang2Kuibo Yin3Yueming Sun1Shuai Dong2Yunqian Dai1( )
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
School of Physics, Southeast University, Nanjing 211189, China
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China

§ Xiangyu Meng, Qi Zhan, and Yanan Wu contributed equally to this work.

Show Author Information

Graphical Abstract

A bioinspired ivy-like Fe2O3 photo-sheets aligned on TiO2 nanofibers were demonstrated with efficient photoelectrochemical performance, featured with enhanced light-harvesting, rapid electron transfer, and the unique hydrophilic/aerophobic features.

Abstract

Photoelectrochemical (PEC) nanomaterials are critical to producing clean oxygenation or value-added chemical production by utilizing sustainable solar energy, but are always limited by simultaneous integration of architectural engineering and electronic regulation in one structure. Directed by density functional theory (DFT) calculations and finite element analysis (FEA), the bio-inspired ivy-like Fe2O3 heterostructures with enriched oxygen defects on TiO2 nanofibers are designed for boosting PEC performances. Ivy-like Fe2O3 photo-sheets remarkably enhanced the light harvesting by multiple light–mater interactions. The oxygen vacancies on Fe2O3 photo-sheets could aid the photons catching and promote the reactivity at active sites. More importantly, demonstrated by a well-designed dynamic observation, the abundant tip-edges within ivy-like Fe2O3 photo-sheets enabled the surface of heterostructure with hydrophilic and aerophobic properties. The functionalized surface allowed the rapid desorption of produced bubbles and thus ensured a high density of unoccupied active sites for electrolyte accessing. Featured by these attributes, the Fe2O3@TiO2 nanofibers delivered an excellent photocurrent of 40.8 mA/mg, high donor density (1.2 × 1018 cm−3), and rapid oxygen production rate (1 mmol/(L∙h)). This work demonstrates a new strategy on nano-structural design for enhancing light-harvesting and making a hydrophilic/aerophobic surface on low-dimensional oxide nanomaterial, holding great potential on designing high-performance PEC devices for producing survival source gas, carbon-neutral fuel, and valued-chemicals.

Electronic Supplementary Material

Download File(s)
12274_2022_4893_MOESM1_ESM.pdf (941.5 KB)

References

[1]

Hu, Y. G.; Gao, C.; Xiong, Y. J. Time-resolved X-ray absorption spectroscopy: Visualizing the time evolution of photophysics and photochemistry in photocatalytic solar energy conversion. Sol. RRL 2021, 5, 2000468.

[2]

Yang, J.; Wang, X.; Li, B.; Ma, L.; Shi, L.; Xiong, Y. J.; Xu, H. X. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 2017, 27, 1606497.

[3]

Bie, C. B.; Wang, L. X.; Yu, J. G. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574.

[4]

Shao, M. Z.; Liu, D. P.; Yan, B. L.; Feng, X. L.; Zhang, X. J.; Zhang, Y. Layer-by-layer electrodeposition of FTO/TiO2/CuxO/CeO2 (1 < x < 2) photocatalysts with high peroxidase-like activity by greatly enhanced singlet oxygen generation. Small Methods 2021, 5, 2100423.

[5]

Wei, D. X.; Tan, Y. B.; Wang, Y. Q.; Kong, T. T.; Shen, S. H.; Mao, S. S. Function-switchable metal/semiconductor junction enables efficient photocatalytic overall water splitting with selective water oxidation products. Sci. Bull. 2020, 65, 1389–1395.

[6]

Jayachitra, S.; Mahendiran, D.; Ravi, P.; Murugan, P.; Sathish, M. Highly conductive NiSe2 nanoparticle as a co-catalyst over TiO2 for enhanced photocatalytic hydrogen production. Appl. Catal. B:Environ. 2022, 307, 121159.

[7]

Ruan, X. W.; Cui, X. Q.; Cui, Y.; Fan, X. F.; Li, Z. Y.; Xie, T. F.; Ba, K. K.; Jia, G. R.; Zhang, H. Y.; Zhang, L. et al. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%. Adv. Energy Mater. 2022, 12, 2200298.

[8]

Gao, B. W.; Sun, M. X.; Ding, W.; Ding, Z. P.; Liu, W. Z. Decoration of γ-graphyne on TiO2 nanotube arrays: Improved photoelectrochemical and photoelectrocatalytic properties. Appl. Catal. B:Environ. 2021, 281, 119492.

[9]

Zhang, Y.; Wu, L. L.; Zhao, X. Y.; Zhao, Y. N.; Tan, H. Q.; Zhao, X.; Ma, Y. Y.; Zhao, Z.; Song, S. Y.; Wang, Y. H. et al. Leaf-mosaic-inspired vine-like graphitic carbon nitride showing high light absorption and efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801139.

[10]

Marwat, M. A.; Humayun, M.; Afridi, M. W.; Zhang, H. B.; Karim, M. R. A.; Ashtar, M.; Usman, M.; Waqar, S.; Ullah, H.; Wang, C. D. et al. Advanced catalysts for photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 12007–12031.

[11]

Angulo, A.; Van Der Linde, P.; Gardeniers, H.; Modestino, M.; Rivas, D. F. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 2020, 4, 555–579.

[12]

Sun, H. C.; Li, L. F.; Humayun, M.; Zhang, H. M.; Bo, Y. N.; Ao, X.; Xu, X. F.; Chen, K.; Ostrikov, K.; Huo, K. F. et al. Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh(OH)3/NiTe coaxial nanorod array electrode. Appl. Catal. B:Environ. 2022, 305, 121088.

[13]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[14]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[15]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[16]

Lin, L. F.; Xu, Q. R.; Zhang, Y.; Zhang, J. J.; Liang, Y. P.; Dong, S. Ferroelectric ferrimagnetic LiFe2F6: Charge-ordering-mediated magnetoelectricity. Phys. Rev. Mater. 2017, 1, 071401(R).

[17]

Chen, H. Y.; Xu, Y. F.; Kuang, D. B.; Su, C. Y. Recent advances in hierarchical macroporous composite structures for photoelectric conversion. Energy Environ. Sci. 2014, 7, 3887–3901.

[18]

Einert, M.; Ostermann, R.; Weller, T.; Zellmer, S.; Garnweitner, G.; Smarsly, B. M.; Marschall, R. Hollow α-Fe2O3 nanofibres for solar water oxidation: Improving the photoelectrochemical performance by formation of α-Fe2O3/ITO-composite photoanodes. J. Mater. Chem. A 2016, 4, 18444–18456.

[19]

Wang, C. W.; Yang, S.; Fang, W. Q.; Liu, P. R.; Zhao, H. J.; Yang, H. G. Engineered hematite mesoporous single crystals drive drastic enhancement in solar water splitting. Nano Lett. 2016, 16, 427–433.

[20]

Feng, F.; Li, C.; Jian, J.; Qiao, X. K.; Wang, H. Q.; Jia, L. C. Boosting hematite photoelectrochemical water splitting by decoration of TiO2 at the grain boundaries. Chem. Eng. J. 2019, 368, 959–967.

[21]

Liu, J.; Ma, N. K.; Wu, W.; He, Q. G. Recent progress on photocatalytic heterostructures with full solar spectral responses. Chem. Eng. J. 2020, 393, 124719.

[22]

Finger, L. W.; Hazen, R. M. Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. J. Appl. Phys. 1980, 51, 5362–5367.

[23]

Noh, M. F. M.; Ullah, H.; Arzaee, N. A.; Ab Halim, A.; Rahim, M. A. F. A.; Mohamed, N. A.; Safaei, J.; Nasir, S. N. F. M.; Wang, G. X.; Teridi, M. A. M. Rapid fabrication of oxygen defective α-Fe2O3 (110) for enhanced photoelectrochemical activities. Dalton Trans. 2020, 49, 12037–12048.

[24]

Zhang, Z. K.; Gao, Z. H.; Liu, H. Y.; Abanades, S.; Lu, H. F. High photothermally active Fe2O3 film for CO2 photoreduction with H2O driven by solar light. ACS Appl. Energy Mater. 2019, 2, 8376–8380.

[25]

Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632–635.

[26]

Ren, K.; Yin, P. F.; Zhou, Y. Z.; Cao, X. Z.; Dong, C. K.; Cui, L.; Liu, H.; Du, X. W. Localized defects on copper sulfide surface for enhanced plasmon resonance and water splitting. Small 2017, 13, 1700867.

[27]

Zhan, Q.; Wu, Y. N.; Wang, Y. P.; Liu, S. T.; Meng, X. Y.; Sun, Y. M.; Dai, Y. Q. Graphene-based modulation on the hierarchical growth of Al2O3 heterojunctions outside TiO2 nanofibers via a surfactant-free approach. Compos. Commun. 2020, 21, 100394.

[28]

Fu, W. L.; Liu, K.; Zou, X. X.; Xu, W. L.; Zhao, J. W.; Zhu, M. Y.; Ramakrishna, S.; Sun, Y. M.; Dai, Y. Q. Surface engineering of defective hematite nanostructures coupled by graphene sheets with enhanced photoelectrochemical performance. ACS Sustainable Chem. Eng. 2019, 7, 12750–12759.

[29]

Zhang, X. L.; Zhang, L. J.; Li, Y. C.; Di, L. B. Atmospheric-pressure cold plasma for fabrication of anatase-rutile mixed TiO2 with the assistance of ionic liquid. Catal. Today 2015, 256, 215–220.

[30]

Meng, X. Y.; Xu, W. L.; Li, Z. H.; Yang, J. H.; Zhao, J. W.; Zou, X. X.; Sun, Y. M.; Dai, Y. Q. Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purification. Adv. Fiber Mater. 2020, 2, 93–104.

[31]

Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614.

[32]

Wu, Y. N.; Sun, Y. B.; Fu, W. L.; Meng, X. Y.; Zhu, M. Y.; Ramakrishna, S.; Dai, Y. Q. Graphene-based modulation on the growth of urchin-like Na2Ti3O7 microspheres for photothermally enhanced H2 generation from ammonia borane. ACS Appl. Nano Mater. 2020, 3, 2713–2722.

[33]

Li, Y. G.; Wei, X. L.; Zhu, B. W.; Wang, H.; Tang, Y. X.; Sum, T. C.; Chen, X. D. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: Facile synthesis and enhanced photoelectrochemical performance. Nanoscale 2016, 8, 11284–11290.

[34]

Yi, S. S.; Wang, Z. Y.; Li, H. M.; Zafar, Z.; Zhang, Z. T.; Zhang, L. Y.; Chen, D. L.; Liu, Z. Y.; Yue, X. Z. Coupling effects of indium oxide layer on hematite enabling efficient photoelectrochemical water splitting. Appl. Catal. B:Environ. 2021, 283, 119649.

[35]

Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

[36]

Lv, N.; Li, Y. Y.; Huang, Z. L.; Li, T.; Ye, S. Y.; Dionysiou, D. D.; Song, X. L. Synthesis of GO/TiO2/Bi2WO6 nanocomposites with enhanced visible light photocatalytic degradation of ethylene. Appl. Catal. B: Environ. 2019, 246, 303–311.

[37]

Kim, J. H.; Seo, S.; Lee, J. H.; Choi, H.; Kim, S.; Piao, G.; Kim, Y. R.; Park, B.; Lee, J.; Jung, Y. et al. Efficient and stable perovskite-based photocathode for photoelectrochemical hydrogen production. Adv. Funct. Mater. 2021, 31, 2008277.

[38]

Nguyen, T. B.; Huang, C. P.; Doong, R. A. Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. Sci. Total Environ. 2019, 646, 745–756.

[39]

Wang, M. H.; Yin, H. S.; Zhou, Y. L.; Sui, C.; Wang, Y.; Meng, X. J.; Waterhouse, G. I. N.; Ai, S. Y. Photoelectrochemical biosensor for microRNA detection based on a MoS2/g-C3N4/black TiO2 heterojunction with Histostar@AuNPs for signal amplification. Biosens. Bioelectron. 2019, 128, 137–143.

[40]

Zhang, H. J.; Chen, G. H.; Bahnemann, D. W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121.

[41]

Chahrour, K. M.; Yam, F. K.; Eid, A. M. Water-splitting properties of bi-phased TiO2 nanotube arrays subjected to high-temperature annealing. Ceram. Int. 2020, 46, 21471–21481.

[42]

Rahman, G.; Joo, O. S. Electrodeposited nanostructured α-Fe2O3 thin films for solar water splitting: Influence of Pt doping on photoelectrochemical performance. Mater. Chem. Phys. 2013, 140, 316–322.

[43]

Bai, S. L.; Yang, X. J.; Liu, C. Y.; Xiang, X.; Luo, R. X.; He, J.; Chen, A. F. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustainable Chem. Eng. 2018, 6, 12906–12913.

[44]

Liu, T. X.; Wang, Y.; Liu, C. X.; Li, X. M.; Cheng, K.; Wu, Y. D.; Fang, L. P.; Li, F. B.; Liu, C. S. Conduction band of hematite can mediate cytochrome reduction by Fe(II) under dark and anoxic conditions. Environ. Sci. Technol. 2020, 54, 4810–4819.

[45]

Cho, I. S.; Logar, M.; Lee, C. H.; Cai, L. L.; Prinz, F. B.; Zheng, X. L. Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. Nano Lett. 2014, 14, 24–31.

[46]

Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat Commun. 2020, 11, 3028.

Nano Research
Pages 4178-4187
Cite this article:
Meng X, Zhan Q, Wu Y, et al. Aligning Fe2O3 photo-sheets on TiO2 nanofibers with hydrophilic and aerophobic surface for boosting photoelectrochemical performance. Nano Research, 2023, 16(3): 4178-4187. https://doi.org/10.1007/s12274-022-4893-2
Topics:
Part of a topical collection:

949

Views

7

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 06 July 2022
Revised: 08 August 2022
Accepted: 09 August 2022
Published: 13 September 2022
© Tsinghua University Press 2022
Return