AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosting the photo-induced charge transfer in melon by lengthening the melon chains through a facile regrowth approach

Tongtong Li1,2Shulan Wang1Li Li3( )Xiaohua Yu4Huaze Zhu2Ningdong Feng5Ju Rong4Yongqiang Yang2( )Gang Liu2
Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
School of Metallurgy, Northeastern University, Shenyang 110819, China
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Show Author Information

Graphical Abstract

With a facile regrowth approach, the melon chains in carbon nitride were experimentally lengthened, thus leading to dramatically improved structure order and boosted transfer of photo-induced electrons and holes.

Abstract

Melon-derived carbon nitride photocatalysts are a kind of star layered materials applied in solar energy conversion. With in-plane π orbitals of the heptazine subunits and their overlap along the melon chains being the most distinctive feature, the condition of melon chains is of great importance for the atomic and energy band structures of carbon nitride photocatalysts as well as their photo-activities. In principle, fragmentized melon chains in practical carbon nitride would lead to unfavorable structure disorder both in longitudinal and vertical directions, thus inhibiting the efficient transfer for photo-induced electrons and holes, respectively. Here, with a facile regrowth approach, that is to treat carbon nitride under the atmosphere containing C/N species, the melon chains in carbon nitride were experimentally lengthened, which was reflected by the regularly fraction variation of different nitrogen species derived from X-ray photoelectron spectroscopy (XPS) analysis. The prolonged melon chains led to dramatically improved in-plane structure order and boosted transfer of photo-induced electrons and holes, which were confirmed by the spontaneous photo-deposition of oxidants and reductants. The combination of this regrowth approach with homogenously distributed nitrogen vacancies resulted in much enhanced visible-light-responsive photoactivities. Besides, control experiments using nitrogen-vacancy-free carbon nitride and different C/N-contained precursors showed the compatibility as well as the critical factors for the lengthening effects of the regrowth approach. We hope that the facile but efficient regrowth approach could be widely adopted in melon-derived carbon nitride photocatalysts used for various applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4896_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Akhundi, A.; Badiei, A.; Ziarani, G. M.; Habibi-Yangjeh, A.; Muñoz-Batista, M. J.; Luque, R. Graphitic carbon nitride-based photocatalysts: Toward efficient organic transformation for value-added chemicals production. Mol. Catal. 2020, 488, 110902.

[2]

Dai, C. H.; Liu, B. Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 2020, 13, 24–52.

[3]

Liang, Z. Z.; Shen, R. C.; Ng, Y. H.; Zhang, P.; Xiang, Q. J.; Li, X. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J. Mater. Sci. Technol. 2020, 56, 89–121.

[4]

Shen, R. C.; Ren, D. D.; Ding, Y. N.; Guan, Y. T.; Ng, Y. H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci. China Mater. 2020, 63, 2153–2188.

[5]

Zhang, W. H.; Mohamed, A. R.; Ong, W. J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem., Int. Ed. 2020, 59, 22894–22915.

[6]

Li, S. W.; Miao, P.; Zhang, Y. Y.; Wu, J.; Zhang, B.; Du, Y. C.; Han, X. J.; Sun, J. M.; Xu, P. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2021, 33, 2000086.

[7]

Wang, Y. C.; Ren, B. Y.; Ou, J. Z.; Xu, K.; Yang, C. H.; Li, Y. X.; Zhang, H. J. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci. Bull. 2021, 66, 1228–1252.

[8]

Chang, S. F.; Yu, J. X.; Wang, R.; Fu, Q. Y.; Xu, X. X. LaTaON2 mesoporous single crystals for efficient photocatalytic water oxidation and Z-scheme overall water splitting. ACS Nano 2021, 15, 18153–18162.

[9]

Li, S. S.; Sun, J. R.; Guan, J. Q. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 511–556.

[10]

Wei, Z. D.; Liu, J. Y.; Shangguan, W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chin. J. Catal. 2020, 41, 1440–1450.

[11]

Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

[12]

Hao, Q.; Jia, G. H.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18–37.

[13]

Malik, R.; Tomer, V. K. State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renew. Sust. Energy Rev. 2021, 135, 110235.

[14]

Wang, W. J.; Zhou, C. Y.; Yang, Y.; Zeng, G. M.; Zhang, C.; Zhou, Y.; Yang, J. N.; Huang, D. L.; Wang, H.; Xiong, W. P. et al. Carbon nitride based photocatalysts for solar photocatalytic disinfection, can we go further? Chem. Eng. J. 2021, 404, 126540.

[15]

Yan, X. X.; Jia, Z. Y.; Che, H. B.; Chen, S. Q.; Hu, P.; Wang, J. S.; Wang, L. Z. A selective ion replacement strategy for the synthesis of copper doped carbon nitride nanotubes with improved photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2018, 234, 19–25.

[16]

Lin, Z. Z.; Wang, X. C. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem., Int. Ed. 2013, 52, 1735–1738.

[17]

Zhang, J. S.; Zhang, M. W.; Lin, S.; Fu, X. Z.; Wang, X. C. Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity. J. Catal. 2014, 310, 24–30.

[18]

Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648.

[19]

Lv, M. L.; Sun, X. Q.; Wei, S. H.; Shen, C.; Mi, Y. L.; Xu, X. X. Ultrathin lanthanum tantalate perovskite nanosheets modified by nitrogen doping for efficient photocatalytic water splitting. ACS Nano 2017, 11, 11441–11448.

[20]

Xu, X. X.; Wang, R.; Sun, X. Q.; Lv, M. L.; Ni, S. Layered perovskite compound NaLaTiO4 modified by nitrogen doping as a visible light active photocatalyst for water splitting. ACS Catal. 2020, 10, 9889–9898.

[21]

Lowther, J. E. Defective and amorphous structure of carbon nitride. Phys. Rev. B 1998, 57, 5724–5727.

[22]

Hou, Y.; Yang, J.; Lei, C. J.; Yang, B.; Li, Z. J.; Xie, Y.; Zhang, X. W.; Lei, L. C.; Chen, J. H. Nitrogen vacancy structure driven photoeletrocatalytic degradation of 4-chlorophenol using porous graphitic carbon nitride nanosheets. ACS Sustainable Chem. Eng. 2018, 6, 6497–6506.

[23]

Niu, P.; Yin, L. C.; Yang, Y. Q.; Liu, G.; Cheng, H. M. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Adv. Mater. 2014, 26, 8046–8052.

[24]

Wu, G.; Gao, Y.; Zheng, B. H. Template-free method for synthesizing sponge-like graphitic carbon nitride with a large surface area and outstanding nitrogen photofixation ability induced by nitrogen vacancies. Ceram. Int. 2016, 42, 6985–6992.

[25]

Zhang, L. S.; Ding, N.; Hashimoto, M.; Iwasaki, K.; Chikamori, N.; Nakata, K.; Xu, Y. Z.; Shi, J. J.; Wu, H. J.; Luo, Y. H. et al. Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano Res. 2018, 11, 2295–2309.

[26]

Hu, S. W.; Yang, L. W.; Tian, Y.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K. Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity. Appl. Catal. B Environ. 2015, 163, 611–622.

[27]

Yang, L.; Fu, Q. Y.; Wang, L. N.; Yu, J. X.; Xu, X. X. Liberating photocarriers in mesoporous single-crystalline SrTaO2N for efficient solar water splitting. Appl. Catal. B Environ. 2022, 304, 120934.

[28]

Yang, L.; Yu, J. X.; Fu, Q. Y.; Kong, L. L.; Xu, X. X. Mesoporous single-crystalline SrNbO2N: Expediting charge transportation to advance solar water splitting. Nano Energy 2022, 95, 107059.

[29]

Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Liu, G.; Cheng, H. M. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 2015, 27, 4572–4577.

[30]

Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Wang, L. Z.; Liu, G.; Cheng, H. M. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater. 2016, 28, 6471–6477.

[31]

Chen, X. F.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Ordered mesoporous SBA-15 type graphitic carbon nitride: A semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 2009, 21, 4093–4095.

[32]

Yuliati, L.; Yang, J. H.; Wang, X. C.; Maeda, K.; Takata, T.; Antonietti, M.; Domen, K. Highly active tantalum(v) nitridenanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. J. Mater. Chem. 2010, 20, 4295–4298.

[33]

Wang, Y.; Wang, X. C.; Antonietti, M.; Zhang, Y. J. Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. ChemSusChem 2010, 3, 435–439.

[34]

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

[35]

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604–11609.

[36]

Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108.

[37]

Moradi, R.; Hosseini, J. Carbon nitride nanotube as a chemical sensor for melamine: A theoretical study. J. Mex. Chem. Soc. 2016, 60, 200–206.

[38]

Li, K. X.; Zeng, Z. X.; Yan, L. S.; Luo, S. L.; Luo, X. B.; Huo, M. X.; Guo, Y. H. Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl. Catal. B Environ. 2015, 165, 428–437.

[39]

Yola, M. L.; Atar, N. A highly efficient nanomaterial with molecular imprinting polymer: Carbon nitride nanotubes decorated with graphene quantum dots for sensitive electrochemical determination of chlorpyrifos. J. Electrochem. Soc. 2017, 164, B223–B229.

[40]

Liu, H. J.; Wang, X. Y.; Wang, H.; Nie, R. R. Synthesis and biomedical applications of graphitic carbon nitride quantum dots. J. Mater. Chem. B 2019, 7, 5432–5448.

[41]

Kumar, P.; Thakur, U. K.; Alam, K.; Kar, P.; Kisslinger, R.; Zeng, S.; Patel, S.; Shankar, K. Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon 2018, 137, 174–187.

[42]

Fu, J. W.; Yu, J. G.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

[43]

Zheng, D. D.; Zhang, G. G.; Wang, X. C. Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. Appl. Catal. B Environ. 2015, 179, 479–488.

[44]

Ansari, S. A.; Ansari, M. O.; Cho, M. H. Facile and scale up synthesis of red phosphorus-graphitic carbon nitride heterostructures for energy and environment applications. Sci. Rep. 2016, 6, 27713.

[45]

Rajender, G.; Choudhury, B.; Giri, P. K. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance. Nanotechnology 2017, 28, 395703.

[46]

Fang, Y. X.; Xu, Y. T.; Li, X. C.; Ma, Y. W.; Wang, X. C. Coating polymeric carbon nitride photoanodes on conductive Y: ZnO nanorod arrays for overall water splitting. Angew. Chem., Int. Ed. 2018, 57, 9749–9753.

[47]

Shi, L.; Chang, K.; Zhang, H. B.; Hai, X.; Yang, L. Q.; Wang, T.; Ye, J. H. Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light. Small 2016, 12, 4431–4439.

[48]

Molina, B.; Sansores, L. E. Electronic structure of Ge3N4 possible structures. Int. J. Quantum Chem. 2000, 80, 249–257.

[49]

Redemann, C. E.; Lucas, H. J. Some derivatives of cyameluric acid and probable structures of melam, melem and melon. J. Am. Chem. Soc. 1940, 62, 842–846.

[50]

Alwin, E.; Nowicki, W.; Wojcieszak, R.; Zieliński, M.; Pietrowski, M. Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Trans. 2020, 49, 12805–12813.

[51]

Lotsch, B. V.; Döblinger, M.; Sehnert, J.; Seyfarth, L.; Senker, J.; Oeckler, O.; Schnick, W. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. Chem.—Eur. J. 2007, 13, 4969–4980.

[52]

Lan, H. C.; Li, L. L.; An, X. Q.; Liu, F.; Chen, C. B.; Liu, H. J.; Qu, J. H. Microstructure of carbon nitride affecting synergetic photocatalytic activity: Hydrogen bonds vs. structural defects. Appl. Catal. B Environ. 2017, 204, 49–57.

[53]

Akaike, K.; Aoyama, K.; Dekubo, S.; Onishi, A.; Kanai, K. Characterizing electronic structure near the energy gap of graphitic carbon nitride based on rational interpretation of chemical analysis. Chem. Mater. 2018, 30, 2341–2352.

[54]

Niu, P.; Liu, G.; Cheng, H. M. Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 2012, 116, 11013–11018.

[55]

Inoki, H.; Seo, G.; Kanai, K. Synthesis of graphitic carbon nitride under low ammonia partial pressure. Appl. Surf. Sci. 2020, 534, 147569.

[56]

Zhang, M. J.; An, Y. P.; Sun, Y. Q.; Wu, D. P.; Chen, X. N.; Wang, T. X.; Xu, G. L.; Wang, K. W. The electronic transport properties of zigzag phosphorene-like MX (M = Ge/Sn, X = S/Se) nanostructures. Phys. Chem. Chem. Phys. 2017, 19, 17210–17215.

Nano Research
Pages 2076-2084
Cite this article:
Li T, Wang S, Li L, et al. Boosting the photo-induced charge transfer in melon by lengthening the melon chains through a facile regrowth approach. Nano Research, 2023, 16(2): 2076-2084. https://doi.org/10.1007/s12274-022-4896-z
Topics:

895

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 15 July 2022
Revised: 07 August 2022
Accepted: 10 August 2022
Published: 12 September 2022
© Tsinghua University Press 2022
Return