AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution

Nan WangDongxu WangAiping WuSiyu WangZhihui LiChengxu JinYouming DongFanyi KongChungui Tian( )Honggang Fu( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
Show Author Information

Graphical Abstract

A double-effect strategy was realized in a simple one-step hydrothermal treatment to prepare V2O5 nanoribbons with intercalation of Ce element and introduction of abundant oxygen defects to enhance zinc-ion storage synergistically.

Abstract

The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalytic field. The catalytic system with the large accessible surface and good mass-transfer ability, as well as the intimate combination of co-catalyst with semiconductor is promising for the promotion of the application. Here, we have reported the design of the two-dimensional (2D) porous C3N4 nanosheets (PCN NS) intimately combined with few-layered MoS2 for the high-effective Pt-free PHE. The PCN NS were synthesized based on peeling the melamine–cyanuric acid precursor (MC precursor) by the triphenylphosphine (TP) molecular followed by the calcination, mainly due to the matched size of the (100) plane distance of the precursor (0.8 nm) and the height of TP molecular. The porous structure is favorable for the mass-transfer and the 2D structure having large accessible surface, both of which are positive to promote the photocatalytic ability. The few-layered MoS2 are grown on PCN to give 2D MoS2/PCN composites based on anchoring phosphomolybdic acid (PMo12) cluster on polyetherimide (PEI)-modified PCN followed by the vulcanization. The few-layered MoS2 have abundant edge active sites, and its intimate combination with porous PCN NS is favorable for the faster transfer and separation of the electrons. The characterization together with the advantage of 2D porous structure can largely promote the photocatalytic ability. The MoS2/PCN showed good PHE activity with the high hydrogen production activity of 4,270.8 μmol·h−1·g−1 under the simulated sunlight condition (AM1.5), which was 7.9 times of the corresponding MoS2/bulk C3N4 and 12.7 times of the 1 wt.% Pt/bulk C3N4. The study is potentially meaningful for the synthesis of PCN-based catalytic systems.

Electronic Supplementary Material

Download File(s)
12274_2022_4900_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

[2]

Zhou, Z. X.; Zhang, Y. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298–2321.

[3]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[4]

Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

[5]

Hao, Q.; Jia, G. H.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18–37.

[6]

Nasir, M. S.; Yang, G. R.; Ayub, I.; Wang, S. L.; Wang, L.; Wang, X. J.; Yan, W.; Peng, S. J.; Ramakarishna, S. Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Appl. Catal. B Environ. 2019, 257, 117855.

[7]

Wang, Y.; Phua, S. Z. F.; Dong, G.; Liu, X. Q.; He, B.; Zhai, Q. L.; Li, Y. C.; Zheng, C. C.; Quan, H. P.; Li, Z. et al. Structure tuning of polymeric carbon nitride for solar energy conversion: From nano to molecular scale. Chem 2019, 5, 2775–2813.

[8]

Liu, J.; Wang, H. Q.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326.

[9]

Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

[10]

Liu, L. Z.; Huang, H. W.; Chen, Z. S.; Yu, H. J.; Wang, K. Y.; Huang, J. D.; Yu, H.; Zhang, Y. H. Synergistic polarization engineering on bulk and surface for boosting CO2 photoreduction. Angew. Chem., Int. Ed. 2021, 60, 18303–18308.

[11]

Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: From recent advances to new trends. Small Struct. 2021, 2, 2000061.

[12]

Zhou, L.; Zhuang, Z. C.; Zhao, H. H.; Lin, M. T.; Zhao, D. Y.; Mai, L. Q. Intricate hollow structures: Controlled synthesis and applications in energy storage and conversion. Adv. Mater. 2017, 29, 1602914.

[13]

Xiao, M.; Wang, Z. L.; Lyu, M.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.

[14]

Zhang, X. D; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 2014, 26, 4438–4443.

[15]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

[16]

Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108.

[17]

Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.

[18]

Wang, Y. H.; Liu, L. Z.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. 2D graphitic carbon nitride for energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2102540.

[19]

Gupta, U.; Rao, C. N. R. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy 2017, 41, 49–65.

[20]

Gong, S. Q.; Jiang, Z. J.; Shi, P. H.; Fan, J. C.; Xu, Q. J.; Min, Y. L. Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: Molybdenum nitride/ultrathin graphitic carbon nitride. Appl. Catal. B Environ. 2018, 238, 318–327.

[21]

Liu, Y. Z.; Zhang, H. Y.; Ke, J.; Zhang, J. Q.; Tian, W. J.; Xu, X. Y.; Duan, X. G.; Sun, H. Q.; Tade, M. O.; Wang, S. B. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B Environ. 2018, 228, 64–74.

[22]

Yuan, Y. J.; Shen, Z. K.; Wu, S. T.; Su, Y. B.; Pei, L.; Ji, Z. G.; Ding, M. Y.; Bai, W. F.; Chen, Y. F.; Yu, Z. T. et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D–2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl. Catal. B Environ. 2019, 246, 120–128.

[23]

Bian, H.; Ji, Y. J.; Yan, J. Q.; Li, P.; Li, L.; Li, Y. Y.; Liu, S. Z. In situ synthesis of few-layered g-C3N4 with vertically aligned MoS2 loading for boosting solar-to-hydrogen generation. Small 2018, 14, 1703003.

[24]

Sun, Y. Y.; Chen, Z. Z.; Gong, H. P.; Li, X. Q.; Gao, Z. F.; Xu, S. C.; Han, X. D.; Han, B.; Meng, X. W.; Zhang, J. Continuous “snowing” thermotherapeutic graphene. Adv. Mater. 2020, 32, 2002024.

[25]

Shi, L.; Chang, K.; Zhang, H. B.; Hai, X.; Yang, L. Q.; Wang, T.; Ye, J. H. Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light. Small 2016, 12, 4431–4439.

[26]

Ou, H. H.; Lin, L. H.; Zheng, Y.; Yang, P. J.; Fang, Y. X.; Wang, X. C. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 2017, 29, 1700008.

[27]

Zhang, G.; Ji, Q. H.; Wu, Z.; Wang, G. C.; Liu, H. J.; Qu, J. H.; Li, J. H. Facile “spot-heating” synthesis of carbon dots/carbon nitride for solar hydrogen evolution synchronously with contaminant decomposition. Adv. Funct. Mater. 2018, 28, 1706462.

[28]

Tian, S. F.; Chen, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai, F. Bottom–up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.

[29]

Xiao, Y. T.; Tian, G. H.; Li, W.; Xie, Y.; Jiang, B. J.; Tian, C. G.; Zhao, D. Y.; Fu, H. G. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. J. Am. Chem. Soc. 2019, 141, 2508–2515.

[30]

Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834.

[31]

Schwinghammer, K.; Tuffy, B.; Mesch, M. B.; Wirnhier, E.; Martineau, C.; Taulelle, F.; Schnick, W.; Senker, J.; Lotsch, B. V. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angew. Chem., Int. Ed. 2013, 52, 2435–2439.

[32]

Ando, N.; Yamada, T.; Narita, H.; Oehlmann, N. N.; Wagner, M.; Yamaguchi, S. Boron-doped polycyclic π-electron systems with an antiaromatic borole substructure that forms photoresponsive B–P lewis adducts. J. Am. Chem. Soc. 2021, 143, 9944–9951.

[33]

Yan, H. J.; Tian, C. G.; Wang, L.; Wu, A. P.; Meng, M. C.; Zhao, L.; Fu, H. G. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 6325–6329.

[34]

Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

[35]

Peng, J.; Liu, Y. H.; Luo, X.; Wu, J. J.; Lin, Y.; Guo, Y. Q.; Zhao, J. Y.; Wu, X. J.; Wu, C. Z.; Xie, Y. High phase purity of large-sized 1T'-MoS2 monolayers with 2D superconductivity. Adv. Mater. 2019, 31, 1900568.

[36]

Liu, Z. Y.; Wu, A. P.; Yan, H. J.; Su, D. N.; Jin, C. X.; Guo, H.; Wang, L.; Tian, C. G. An effective “precursor-transformation” route toward the high-yield synthesis of ZIF-8 tubes. Chem. Commun. 2020, 56, 2913–2916.

[37]

Guo, H.; Wu, A. P.; Xie, Y.; Yan, H. J.; Wang, D. X.; Wang, L.; Tian, C. G. 2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. J. Mater. Chem. A 2021, 9, 8620–8629.

[38]

Lu, X. L.; Xu, K.; Chen, P. Z.; Jia, K. C.; Liu, S.; Wu, C. Z. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J. Mater. Chem. A 2014, 2, 18924–18928.

[39]

Xia, P. F.; Zhu, B. C.; Yu, J. G.; Cao, S. W.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230–3238.

[40]

Yu, Y.; Yan, W.; Wang, X. F.; Li, P.; Gao, W. Y.; Zou, H. H.; Wu, S. M.; Ding, K. J. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060.

[41]

Gao, S. Y.; Wang, X. Y.; Song, C. J.; Zhou, S. J.; Yang, F.; Kong, Y. Engineering carbon-defects on ultrathin g-C3N4 allows one-pot output and dramatically boosts photoredox catalytic activity. Appl. Catal. B Environ. 2021, 295, 120272.

[42]

Yu, X. N.; Ng, S. F.; Putri, L. K.; Tan, L. L.; Mohamed, A. R.; Ong, W. J. Point-defect engineering: Leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis. Small 2021, 17, 2006851.

[43]

Chen, J. J.; Mao, Z. Y.; Zhang, L. X.; Wang, D. J.; Xu, R.; Bie, L. J.; Fahlman, B. D. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 2017, 11, 12650–12657.

[44]

Huang, T.; Pan, S. G.; Shi, L. L.; Yu, A. P.; Wang, X.; Fu, Y. S. Hollow porous prismatic graphitic carbon nitride with nitrogen vacancies and oxygen doping: A high-performance visible light-driven catalyst for nitrogen fixation. Nanoscale 2020, 12, 1833–1841.

[45]

Yang, P. J.; Shang, L.; Zhao, J. H.; Zhang, M.; Shi, H.; Zhang, H. X.; Yang, H. Q. Selectively constructing nitrogen vacancy in carbon nitrides for efficient syngas production with visible light. Appl. Catal. B Environ. 2021, 297, 120496.

[46]

Chen, H.; Wang, W. Y.; Yang, Z. Z.; Suo, X.; Lu, Z. Y.; Xiao, W. M.; Dai, S. Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photocatalytic efficiency. J. Mater. Chem. A 2021, 9, 4700–4706.

[47]

Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

[48]

Tian, J. J.; Zhang, L. X.; Fan, X. Q.; Zhou, Y. J.; Wang, M.; Cheng, R. L.; Li, M. L.; Kan, X. T.; Jin, X. X.; Liu, Z. H. et al. A post-grafting strategy to modify g-C3N4 with aromatic heterocycles for enhanced photocatalytic activity. J. Mater. Chem. A 2016, 4, 13814–13821.

[49]

Hai, X.; Chang, K.; Pang, H.; Li, M.; Li, P.; Liu, H. M.; Shi, L.; Ye, J. H. Engineering the edges of MoS2 (WS2) crystals for direct exfoliation into monolayers in polar micromolecular solvents. J. Am. Chem. Soc. 2016, 138, 14962–14969.

[50]

Li, M. L.; Zhang, L. X.; Fan, X. Q.; Wu, M. Y.; Du, Y. Y.; Wang, M.; Kong, Q. L.; Zhang, L. L.; Shi, J. L. Dual synergetic effects in MoS2/pyridine-modified g-C3N4 composite for highly active and stable photocatalytic hydrogen evolution under visible light. Appl. Catal. B Environ. 2016, 190, 36–43.

[51]

Yan, H. J.; Jiao, Y. Q.; Wu, A. P.; Tian, C. G.; Wang, L.; Zhang, X. M.; Fu, H. G. Synergism of molybdenum nitride and palladium for high-efficiency formic acid electrooxidation. J. Mater. Chem. A 2018, 6, 7623–7630.

[52]

Zhou, W. J.; Yin, Z. Y.; Du, Y. P.; Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, H.; Wang, J. Y.; Zhang, H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 2013, 9, 140–147.

[53]

Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621–3625.

[54]

Zhou, W. W.; Liu, M. F.; Zhang, Q.; Wei, Q.; Ding, S. J.; Zhou, Y. S. Synthesis of NiMo catalysts supported on gallium-containing mesoporous Y zeolites with different gallium contents and their high activities in the hydrodesulfurization of 4, 6-dimethyldibenzothiophene. ACS Catal. 2017, 7, 7665–7679.

[55]

Wu, A. P.; Tian, C. G.; Jiao, Y. Q.; Yan, Q.; Yang, G. Y.; Fu, H. G. Sequential two-step hydrothermal growth of MoS2/CdS core–shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. Appl. Catal. B Environ. 2017, 203, 955–963.

[56]

Zhu, J. T.; Xu, H.; Zou, G. F.; Zhang, W.; Chai, R. Q.; Choi, J.; Wu, J.; Liu, H. Y.; Shen, G. Z.; Fan, H. Y. MoS2–OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 2019, 141, 5392–5401.

[57]

Midya, A.; Ghorai, A.; Mukherjee, S.; Maiti, R.; Ray, S. K. Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications. J. Mater. Chem. A 2016, 4, 4534–4543.

[58]

Sun, B. J.; Zhou, W.; Li, H. Z.; Ren, L. P.; Qiao, P. Z.; Li, W.; Fu, H. G. Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production. Adv. Mater. 2018, 30, 1804282.

Nano Research
Pages 3524-3535
Cite this article:
Wang N, Wang D, Wu A, et al. Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Research, 2023, 16(2): 3524-3535. https://doi.org/10.1007/s12274-022-4900-7
Topics:

875

Views

30

Crossref

32

Web of Science

29

Scopus

2

CSCD

Altmetrics

Received: 30 June 2022
Revised: 10 August 2022
Accepted: 11 August 2022
Published: 11 September 2022
© Tsinghua University Press 2022
Return