Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Article

Structural regulation of single-atom catalysts for enhanced catalytic oxidation performance of volatile organic compounds

Fei Jiang1Zhiyuan Zhou2Chao Zhang3Chao Feng1Gaoyan Xiong1Yunxia Wang1Zhaoyang Fei4Yunqi Liu1Yuan Pan1()
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
Heavy Oil Processing Laboratory, Petrochemical Research Institute, PetroChina, Beijing 102206, China
School of Material Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Technology University, Nanjing 211816, China
Show Author Information

Graphical Abstract

View original image Download original image
The research progress, oxidation kinetics and mechanisms, a variety of structural regulation methods, as well as opportunities and challenges of single-atom catalysts (SACs) for volatile organic compounds (VOCs) oxidation are discussed in detail.

Abstract

The catalytic oxidation of volatile organic compounds (VOCs) is considered a feasible method for VOCs treatment by virtue of its low technical cost, high economic efficiency, and low additionally produced pollutants, which is of important social value. Single-atom catalysts (SACs) with 100% atom utilization and uniform active sites usually have high activity and high product selectivity, and promise a broad range of applications. Precise regulation of the microstructures of SACs by means of defect engineering, interface engineering, and electronic effects can further improve the catalytic performance of VOCs oxidation. In this review, we introduce the mechanisms of VOCs oxidation, and systematically summarize the recent research progress of SACs in catalytic VOCs total oxidation into CO2 and H2O, and then discuss the effects of various structural regulation strategies on the catalytic performance. Finally, we summarize the current problems yet to be solved and challenges currently faced in this field, and propose future design and research ideas for SACs in catalytic oxidation of VOCs.

References

[1]

Yang, C. T.; Miao, G.; Pi, Y. H.; Xia, Q. B.; Wu, J. L.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153.

[2]

Li, W. B.; Wang, J. X.; Gong, H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 2009, 148, 81–87.

[3]

Liang, X. M.; Chen, X. F.; Zhang, J. N.; Shi, T. L.; Sun, X. B.; Fan, L. Y.; Wang, L. M.; Ye, D. Q. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China. Atmos. Environ. 2017, 162, 115–126.

[4]

Liotta, L. F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B Environ. 2010, 100, 403–412.

[5]

Jeong, S. Y.; Yoon, J. W.; Kim, T. H.; Jeong, H. M.; Lee, C. S.; Kang, Y. C.; Lee, J. H. Ultra-selective detection of sub-ppm-level benzene using Pd-SnO2 yolk–shell micro-reactors with a catalytic Co3O4 overlayer for monitoring air quality. J. Mater. Chem. A. 2017, 5, 1446–1454.

[6]

Wang, H. L.; Nie, L.; Li, J.; Wang, Y. F.; Wang, G.; Wang, J. H.; Hao, Z. P. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chin. Sci. Bull. 2013, 58, 724–730.

[7]

Zhang, Z. X.; Jiang, Z.; Shangguan, W. F. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal. Today. 2016, 264, 270–278.

[8]

Liu, J.; Wang, T.; Shi, N.; Yang, J.; Serageldin, M. A.; Pan, W. P. Enhancing the interaction between Mn and Ce oxides supported on fly ash with organic acid ligands interface modification for effective VOC removal: A combined experimental and DFT + U study. Fuel. 2022, 313, 123043.

[9]

Wei, L. F.; Yu, C. L.; Yang, K.; Fan, Q. Z.; Ji, H. B. Recent advances in VOCs and CO removal via photothermal synergistic catalysis. Chin. J. Catal. 2021, 42, 1078–1095.

[10]

Huang, H. B.; Xu, Y.; Feng, Q. Y.; Leung, D. Y. C. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2015, 5, 2649–2669.

[11]

Li, X. Q.; Zhang, L.; Yang, Z. Q.; Wang, P.; Yan, Y. F.; Ran, J. Y. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep. Purif. Technol. 2020, 235, 116213.

[12]

Luengas, A.; Barona, A.; Hort, C.; Gallastegui, G.; Platel, V.; Elias, A. A review of indoor air treatment technologies. Rev. Environ. Sci. Biotechnol. 2015, 14, 499–522.

[13]

Hu, Q. Y.; Wang, C.; Huang, K. X. Biofiltration performance and characteristics of high-temperature gaseous benzene, hexane and toluene. Chem. Eng. J. 2015, 279, 689–695.

[14]

An, G. J.; Sun, Y. F.; Zhu, T. L.; Yan, X. Degradation of phenol in mists by a non-thermal plasma reactor. Chemosphere 2011, 84, 1296–1300.

[15]

Yokosuka, Y.; Oki, K.; Nishikiori, H.; Tatsumi, Y.; Tanaka, N.; Fujii, T. Photocatalytic degradation of trichloroethylene using N-doped TiO2 prepared by a simple sol-gel process. Res. Chem. Intermed. 2009, 35, 43–53.

[16]

Yuan, M. H.; Chang, C. Y.; Shie, J. L.; Chang, C. C.; Chen, J. H.; Tsai, W. T. Destruction of naphthalene via ozone-catalytic oxidation process over Pt/Al2O3 catalyst. J. Hazard. Mater. 2010, 175, 809–815.

[17]

Huang, B. B.; Lei, C.; Wei, C. H.; Zeng, G. M. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138.

[18]

Li, L. L.; Zhang, F.; Zhong, Z. X.; Zhu, M.; Jiang, C. Y.; Hu, J.; Xing, W. H. Novel synthesis of a high-performance Pt/ZnO/SiC filter for the oxidation of toluene. Ind. Eng. Chem. Res. 2017, 56, 13857–13865.

[19]

Liu, Y. X.; Deng, J. G.; Xie, S. H.; Wang, Z. W.; Dai, H. X. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chin. J. Catal. 2016, 37, 1193–1205.

[20]

Spivey, J. J. Complete catalytic oxidation of volatile organics. Ind. Eng. Chem. Res. 1987, 26, 2165–2180.

[21]

Luo, M.; He, M.; Xie, Y.; Fang, P.; Jin, L. Y. Toluene oxidation on Pd catalysts supported by CeO2-Y2O3 washcoated cordierite honeycomb. Appl. Catal. B Environ. 2007, 69, 213–218.

[22]

Liotta, L. F.; Ousmane, M.; Di Carlo, G.; Pantaleo, G.; Deganello, G.; Boreave, A.; Giroir-Fendler, A. Catalytic removal of toluene over Co3O4-CeO2 mixed oxide catalysts: Comparison with Pt/Al2O3. Catal. Lett. 2009, 127, 270–276.

[23]

Alifanti, M.; Florea, M.; Pârvulescu, V. I. Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC. Appl. Catal. B Environ. 2007, 70, 400–405.

[24]

Chen, J. Y.; He, Z. G.; Li, G. Y.; An, T. C.; Shi, H. X.; Li, Y. Z. Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene. Appl. Catal. B Environ. 2017, 209, 146–154.

[25]

Guo, Y. L.; Gao, Y. J.; Li, X.; Zhuang, G. L.; Wang, K. C.; Zheng, Y.; Sun, D. H.; Huang, J. L.; Li, Q. B. Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chem. Eng. J. 2019, 362, 41–52.

[26]

Ma, Z.; Dai, S. Design of novel structured gold nanocatalysts. ACS Catal. 2011, 1, 805–818.

[27]

Zhao, Y. X.; Li, Z. Y.; Yuan, Z.; Li, X. N.; He, S. G. Thermal methane conversion to formaldehyde promoted by single platinum atoms in PtAl2O4 cluster anions. Angew. Chem., Int. Ed. 2014, 53, 9482–9486.

[28]

Ordóñez, S.; Bello, L.; Sastre, H.; Rosal, R.; Dı́ez, F. V. Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst. Appl. Catal. B Environ. 2002, 38, 139–149.

[29]

Yazawa, Y.; Takagi, N.; Yoshida, H.; Komai, S. I.; Satsuma, A.; Tanaka, T.; Yoshida, S.; Hattori, T. The support effect on propane combustion over platinum catalyst: Control of the oxidation-resistance of platinum by the acid strength of support materials. Appl. Catal. A Gen. 2002, 233, 103–112.

[30]

Kim, K. J.; Ahn, H. G. Complete oxidation of toluene over bimetallic Pt-Au catalysts supported on ZnO/Al2O3. Appl. Catal. B Environ. 2009, 91, 308–318.

[31]

Schauermann, S.; Hoffmann, J.; Johánek, V.; Hartmann, J.; Libuda, J.; Freund, H. J. Catalytic activity and poisoning of specific sites on supported metal nanoparticles. Angew. Chem., Int. Ed. 2002, 41, 2532–2535.

[32]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. Supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 133, 13500–13505.

[33]

Li, R. Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[34]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[35]

Wang, L. Q.; Huang, L.; Liang, F.; Liu, S. M.; Wang, Y. H.; Zhang, H. J. Preparation, characterization and catalytic performance of single-atom catalysts. Chin. J. Catal. 2017, 38, 1528–1539.

[36]

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

[37]

Lu, Y. B.; Zhang, Z. H.; Wang, H. M.; Wang, Y. Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Appl. Catal. B Environ. 2021, 292, 120162.

[38]

Ma, W.; Wan, H.; Zhang, L. L.; Zheng, J. Y.; Zhou, Z. Single-atom catalysts for electrochemical energy storage and conversion. J. Energy Chem. 2021, 63, 170–194.

[39]

Ji, S. F.; Chen, Y. J.; Zhao, G. F.; Wang, Y.; Sun, W. M.; Zhang, Z. D.; Lu, Y.; Wang, D. S. Atomic-level insights into the steric hindrance effect of single-atom Pd catalyst to boost the synthesis of dimethyl carbonate. Appl. Catal. B Environ. 2022, 304, 120922.

[40]

Jiang, J. S.; Wei, H. L.; Tan, A. D.; Si, R.; Zhang, W. D.; Yu, Y. X. Fabricating high-loading Fe-N4 single-atom catalysts for oxygen reduction reaction by carbon-assisted pyrolysis of metal complexes. Chinese J. Catal. 2021, 42, 753–761.

[41]

Jiang, Q. G.; Huang, M.; Qian, Y. S.; Miao, Y. C.; Ao, Z. M. Excellent sulfur and water resistance for CO oxidation on Pt single-atom-catalyst supported by defective graphene: The effect of vacancy type. Appl. Surf. Sci. 2021, 566, 150624.

[42]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[43]

Kumar, A.; Vashistha, V. K.; Das, D. K.; Ibraheem, S.; Yasin, G.; Iqbal, R.; Nguyen, T. A.; Gupta, R. K.; Rasidul Islam, M. M-N-C-based single-atom catalysts for H2, O2 & CO2 electrocatalysis: Activity descriptors, active sites identification, challenges and prospects. Fuel. 2021, 304, 121420.

[44]

Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

[45]

Li, Y. S.; Dong, S. Z.; Shang, W. L.; Ye, K.; Hu, X. D.; Liu, Y.; Zhao, Z. L.; Guo, L. Application of graphene/two-dimensional amorphous ZrO2 supported Pd single atom catalysts in CO oxidation: First principles. Mol. Catal. 2021, 511, 111684.

[46]

Su, J. N.; Zhuang, L. Z.; Zhang, S. S.; Liu, Q. J.; Zhang, L. Z.; Hu, G. Z. Single atom catalyst for electrocatalysis. Chin. Chem. Lett. 2021, 32, 2947–2962.

[47]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[48]

Zhu, C. Q.; Nie, Y.; Zhao, S. F.; Fan, Z. W.; Liu, F. Q.; Li, A. M. Constructing surface micro-electric fields on hollow single-atom cobalt catalyst for ultrafast and anti-interference advanced oxidation. Appl. Catal. B Environ. 2022, 305, 121057.

[49]

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

[50]

Tian, Y. X.; Yu, L. L.; Zhuang, C. Q.; Zhang, G. Z.; Sun, S. R. Fast synthesis of Pt single-atom catalyst with high intrinsic activity for hydrogen evolution reaction by plasma sputtering. Mater. Today Energy 2021, 22, 100877.

[51]

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[52]

Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[53]

Xiao, R.; Chen, K.; Zhang, X. Y.; Yang, Z. Z.; Hu, G. J.; Sun, Z. H.; Cheng, H. M.; Li, F. Single-atom catalysts for metal-sulfur batteries: Current progress and future perspectives. J. Energy Chem. 2021, 54, 452–466.

[54]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[55]

Wang, H. L.; Xin, W. Y.; Wang, Q.; Zheng, X. D.; Lu, Z. H.; Pei, R. Q.; He, P.; Dong, X. J. Direct methane conversion with oxygen and CO over hydrophobic dB-ZSM-5 supported Rh single-atom catalyst. Catal. Commun. 2022, 162, 106374.

[56]

Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem., Int. Ed. 2022, 61, e202201655.

[57]
Li, L. L.; Ul Hasan, I. M.; Qiao, J. L.; He, R. B.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J.; Farwa, F. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy., in press, https://doi.org.10.26599/NRE.2022.9120015.
[58]

An, B. B.; Zhou, J. S.; Zhu, Z. Y.; Li, Y. Y.; Wang, L.; Zhang, J. L. Uncovering the coordination effect on the Ni single-atom catalysts for CO2 reduction including vacancy defect and non-vacancy defect structures. Fuel. 2022, 310, 122472.

[59]

Sun, Q.; Jia, C.; Zhao, Y.; Zhao, C. Single atom-based catalysts for electrochemical CO2 reduction. Chin. J. Catal. 2022, 43, 1547–1597.

[60]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, e202207268.

[61]
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. , in press, DOI: 10.1007/s12274-022-4429-9.
[62]

Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem., Int. Ed. 2012, 51, 4198–4203.

[63]

Chen, Y. X.; Huang, Z. W.; Zhou, M. J.; Ma, Z.; Chen, J. M.; Tang, X. F. Single silver adatoms on nanostructured manganese oxide surfaces: Boosting oxygen activation for benzene abatement. Environ. Sci. Technol. 2017, 51, 2304–2311.

[64]
Kaichev, V. V.; Gladky, A. Y.; Prosvirin, I. P.; Saraev, A. A.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.; Bukhtiyarov, V. I. In situ XPS study of self-sustained oscillations in catalytic oxidation of propane over nickel. Surf. Sci. 2013, 609, 113–118.
[65]

Garetto, T. F.; Apesteguı́a, C. R. Structure sensitivity and in situ activation of benzene combustion on Pt/Al2O3 catalysts. Appl. Catal. B Environ. 2001, 32, 83–94.

[66]

Tseng, T. K.; Chu, H. The kinetics of catalytic incineration of styrene over a MnO/Fe2O3 catalyst. Sci. Total Environ. 2001, 275, 83–93.

[67]

Wu, J. C. S.; Lin, Z. A.; Tsai, F. M.; Pan, J. W. Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts. Catal. Today 2000, 63, 419–426.

[68]

Banu, I.; Manta, C. M.; Bercaru, G.; Bozga, G. Combustion kinetics of cyclooctane and its binary mixture with o-xylene over a Pt/γ-alumina catalyst. Chem. Eng. Res. Des. 2015, 102, 399–406.

[69]

Aranzabal, A.; Ayastuy-Arizti, J. L.; González-Marcos, J. A.; González-Velasco, J. R. The reaction pathway and kinetic mechanism of the catalytic oxidation of gaseous lean TCE on Pd/alumina catalysts. J. Catal. 2003, 214, 130–135.

[70]

Aranzabal, A.; Ayastuy-Arizti, J. L.; González-Marcos, J. A.; González-Velasco, J. R. Kinetics of the catalytic oxidation of lean trichloroethylene in air over Pd/alumina. Ind. Eng. Chem. Res. 2003, 42, 6007–6011.

[71]

Peng, R. S.; Sun, X. B.; Li, S. J.; Chen, L. M.; Fu, M. L.; Wu, J. L.; Ye, D. Q. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene. Chem. Eng. J. 2016, 306, 1234–1246.

[72]

Genuino, H. C.; Dharmarathna, S.; Njagi, E. C.; Mei, M. C.; Suib, S. L. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts. J. Phys. Chem. C 2012, 116, 12066–12078.

[73]

Dou, B. J.; Li, S. M.; Liu, S. M.; Zhao, R. Z.; Hao, Q. L.; Bin, FB. Catalytic oxidation of ethyl acetate and toluene over Cu-Ce-Zr supported ZSM-5/TiO2 catalysts. RSC Adv. 2016, 6, 53852–53859.

[74]

Heynderickx, M. P.; Thybaut, J. W.; Poelman, H.; Poelman, D.; Marin, G. B. Kinetic modeling of the total oxidation of propane over CuO-CeO2/γ-Al2O3. Appl. Catal. B Environ. 2010, 95, 26–38.

[75]

Benard, S.; Baylet, A.; Vernoux, P.; Valverde, J. L.; Giroir-Fendler, A. Kinetics of the propene oxidation over a Pt/alumina catalyst. Catal. Commun. 2013, 36, 63–66.

[76]

Li, B.; Chen, Y. W.; Li, L.; Kan, J. W.; He, S.; Yang, B.; Shen, S. B.; Zhu, S. M. Reaction kinetics and mechanism of benzene combustion over the NiMnO3/CeO2/cordierite catalyst. J. Mol. Catal. A Chem. 2016, 415, 160–167.

[77]

Zhao, X. T.; Xu, D. J.; Wang, Y. N.; Zheng, Z. W.; Li, K.; Zhang, Y.; Zhan, R. R.; Lin, H. Electric field assisted benzene oxidation over Pt-Ce-Zr nano-catalysts at low temperature. J. Hazard. Mater. 2021, 407, 124349.

[78]

Zeng, J. L.; Liu, X. L.; Wang, J.; Lv, H. L.; Zhu, T. Y. Catalytic oxidation of benzene over MnOx/TiO2 catalysts and the mechanism study. J. Mol. Catal. A Chem. 2015, 408, 221–227.

[79]

Song, Y. B.; Du, H. Y.; Wu, H. C.; Shi, L. Y.; Yu, D. Q.; Jia, R. R.; Chitpakdee, C.; Namuangruk, S.; Huang, L. Photodeposition of alloyed Au-Pt nanoparticles on TiO2 for the enhanced catalytic oxidation of HCHO at room temperature. J. Alloys Compd. 2022, 896, 163140.

[80]

Xu, Y.; Dhainaut, J.; Dacquin, J. P.; Mamede, A. S.; Marinova, M.; Lamonier, J. F.; Vezin, H.; Zhang, H.; Royer, S. La1–x(Sr, Na, K)xMnO3 perovskites for HCHO oxidation: The role of oxygen species on the catalytic mechanism. Appl. Catal. B Environ. 2021, 287, 119955.

[81]

Feng, C.; Xiong, G. Y.; Jiang, F.; Gao, Q. Q.; Chen, C.; Pan, Y.; Fei, Z. Y.; Li, Y. P.; Lu, Y. K.; Liu, C. G. et al. Assembly of sphere-structured MnO2 for total oxidation of propane: Structure–activity relationship and reaction mechanism determination. Sep. Purif. Technol. 2022, 284, 120269.

[82]

Ma, L.; Geng, Y.; Chen, X. Y.; Yan, N. Q.; Li, J. H.; Schwank, J. W. Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts. Chem. Eng. J. 2020, 402, 125911.

[83]

Hu, P. P.; Huang, Z. W.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y. X.; Gu, X.; Tang, X. F. Electronic metal–support interactions in single-atom catalysts. Angew. Chem., Int. Ed. 2014, 53, 3418–3421.

[84]

Zhang, Y.; Liu, Y. X.; Xie, S. H.; Huang, H. B.; Guo, G. S.; Dai, H. X.; Deng, J. G. Supported ceria-modified silver catalysts with high activity and stability for toluene removal. Environ. Int. 2019, 128, 335–342.

[85]

Chen, J.; Yan, D. X.; Xu, Z.; Chen, X.; Chen, X.; Xu, W. J.; Jia, H. P.; Chen, J. A novel redox precipitation to synthesize Au-doped α-MnO2 with high dispersion toward low-temperature oxidation of formaldehyde. Environ. Sci. Technol. 2018, 52, 4728–4737.

[86]

Wang, Z. W.; Yang, H. G.; Liu, R.; Xie, S. H.; Liu, Y. X.; Dai, H. X.; Huang, H. B.; Deng, J. G. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. J. Hazard. Mater. 2020, 392, 122258.

[87]

Zhao, S. Z.; Wen, Y. F.; Liu, X. J.; Pen, X.; Lü, F.; Gao, F. Y.; Xie, X. Z.; Du, C. C.; Yi, H. H.; Kang, D. J. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551.

[88]

Yang, X. Q.; Yu, X. L.; Jing, M. Z.; Song, W. Y.; Liu, J.; Ge, M. F. Defective MnxZr1–xO2 solid solution for the catalytic oxidation of toluene: Insights into the oxygen vacancy contribution. ACS Appl. Mater. Interfaces 2019, 11, 730–739.

[89]

Wen, M. C.; Song, S. N.; Zhao, W. N.; Liu, Q. X.; Chen, J. Y.; Li, G. Y.; An, T. C. Atomically dispersed Pd sites on Ti-SBA-15 for efficient catalytic combustion of typical gaseous VOCs. Environ. Sci. Nano 2021, 8, 3735–3745.

[90]

Herzog, K.; Gaube, J. Kinetic studies for elucidation of the promoter effect of alkali in Fischer–Tropsch iron catalysts. J. Catal. 1989, 115, 337–346.

[91]

Rahman, T. S.; Stolbov, S.; Mehmood, F. Alkali-induced effects on metal substrates and coadsorbed molecules. Appl. Phys. A 2007, 87, 367–374.

[92]

Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W. L.; Ferrin, P.; Nilekar, A. U.; Peng, G. W.; Herron, J. A.; Bell, D. C.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water–gas shift reactions. Science 2010, 329, 1633–1636.

[93]

Huo, C. F.; Wu, B. S.; Gao, P.; Yang, Y.; Li, Y. W.; Jiao, H. The mechanism of potassium promoter: Enhancing the stability of active surfaces. Angew. Chem., Int. Ed. 2011, 50, 7403–7406.

[94]

Chen, Y. X.; Gao, J. Y.; Huang, Z. W.; Zhou, M. J.; Chen, J. X.; Li, C.; Ma, Z.; Chen, J. M.; Tang, X. F. Sodium rivals silver as single-atom active centers for catalyzing abatement of formaldehyde. Environ. Sci. Technol. 2017, 51, 7084–7090.

[95]

Xu, F.; Huang, Z. W.; Hu, P. P.; Chen, Y. X.; Zheng, L.; Gao, J. Y.; Tang, X. F. The promotion effect of isolated potassium atoms with hybridized orbitals in catalytic oxidation. Chem. Commun. 2015, 51, 9888–9891.

[96]

Zhang, H. Y.; Zheng, X. M.; Xu, T. Z.; Zhang, P. Y. Atomically dispersed Y or La on birnessite-type MnO2 for the catalytic decomposition of low-concentration toluene at room temperature. ACS Appl. Mater. Interfaces 2021, 13, 17532–17542.

[97]

Tu, L. H.; Liu, R.; Zhao, D.; Ding, H.; Cui, J. H.; Liang, B. Q. PtPd/TiO2 catalysts for low-temperature toluene oxidation. Catal. Surv. Asia 2021, 25, 389–398.

[98]

Hou, Z. Q.; Dai, L. Y.; Liu, Y. X.; Deng, J. G.; Jing, L.; Pei, W. B.; Gao, R. Y.; Feng, Y.; Dai, H. X. Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium-cobalt catalysts for benzene oxidation. Appl. Catal. B Environ. 2021, 285, 119844.

[99]

Chen, J.; Jiang, M. Z.; Chen, J.; Xu, W. J.; Jia, H. P. Selective immobilization of single-atom Au on cerium dioxide for low-temperature removal of C1 gaseous contaminants. J. Hazard. Mater. 2020, 392, 122511.

[100]

Jiang, Z. Y.; Jing, M. Z.; Feng, X. B.; Xiong, J. C.; He, C.; Douthwaite, M.; Zheng, L. R.; Song, W. Y.; Liu, J.; Qu, Z. G. Stabilizing platinum atoms on CeO2 oxygen vacancies by metal–support interaction induced interface distortion: Mechanism and application. Appl. Catal. B Environ. 2020, 278, 119304.

[101]

Chen, J.; Jiang, M. Z.; Xu, W. J.; Chen, J.; Hong, Z. X.; Jia, H. P. Incorporating Mn cation as anchor to atomically disperse Pt on TiO2 for low-temperature removal of formaldehyde. Appl. Catal. B Environ. 2019, 259, 118013.

[102]

Yang, K.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Han, Z.; Hou, Z. Q.; Dai, H. X. Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Appl. Catal. B Environ. 2019, 244, 650–659.

[103]

Hao, X. Q.; Dai, L. Y.; Deng, J. G.; Liu, Y. X.; Jing, L.; Wang, J.; Pei, W. B.; Zhang, X.; Hou, Z. Q.; Dai, H. X. Nanotubular OMS-2 supported single-atom platinum catalysts highly active for benzene oxidation. J. Phys. Chem. C 2021, 125, 17696–17708.

[104]

Chen, J. X.; Gao, J. Y.; Chen, Y. X.; Liu, X. N.; Li, C.; Qu, W. Y.; Ma, Z.; Tang, X. F. Electronic-structure-dependent performance of single-site potassium catalysts for formaldehyde emission control. Ind. Eng. Chem. Res. 2018, 57, 12352–12357.

[105]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Gu, L.; Zhang, P.; Fu, G.; Zheng, N. F. A vicinal effect for promoting catalysis of Pd1/TiO2: Supports of atomically dispersed catalysts play more roles than simply serving as ligands. Sci. Bull. 2018, 63, 675–682.

[106]

Hu, P. P.; Amghouz, Z.; Huang, Z. W.; Xu, F.; Chen, Y. X.; Tang, X. F. Surface-confined atomic silver centers catalyzing formaldehyde oxidation. Environ. Sci. Technol. 2015, 49, 2384–2390.

[107]

Feng, Y.; Wang, C. C.; Wang, C.; Huang, H. B.; Hsi, H. C.; Duan, E. H.; Liu, Y. X.; Guo, G. S.; Dai, H. X.; Deng, J. G. Catalytic stability enhancement for pollutant removal via balancing lattice oxygen mobility and VOCs adsorption. J. Hazard. Mater. 2022, 424, 127337.

[108]

Peng, H. G.; Dong, T.; Yang, S. Y.; Chen, H.; Yang, Z. Z.; Liu, W. M.; He, C.; Wu, P.; Tian, J. S.; Peng, Y. et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes. Nat. Commun. 2022, 13, 295.

Nano Research
Pages 1967-1983
Cite this article:
Jiang F, Zhou Z, Zhang C, et al. Structural regulation of single-atom catalysts for enhanced catalytic oxidation performance of volatile organic compounds. Nano Research, 2023, 16(2): 1967-1983. https://doi.org/10.1007/s12274-022-4905-2
Topics:
Metrics & Citations  
Article History
Copyright
Return