AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficient quantum dot infrared solar cells with enhanced low-energy photon conversion via optical engineering

Sisi Liu1,§Ming-Yu Li1,§Kao Xiong2Jianbo Gao3Xinzheng Lan2Daoli Zhang2Liang Gao2( )Jianbing Zhang2,4,5( )Jiang Tang2,6
School of Science, Wuhan University of Technology, Wuhan 430070, China
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology, Wenzhou 325035, China
Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
Optics Valley Laboratory, Wuhan 430074, China

§ Sisi Liu and Ming-Yu Li contributed equally to this work.

Show Author Information

Graphical Abstract

An optical resonance cavity is constructed to boost the utilization of low-energy infrared (IR) photons (1,150–1,300 nm) for quantum dot (QD) solar cells. Benefiting from the enhanced light harvesting and efficient carrier extraction, highly efficient photoelectric conversion in the IR region (> 1,100 nm,1.3%) of PbS QD IR solar cells is obtained, which is comparable to the highest value of QD IR solar cells.

Abstract

Infrared (IR) solar cells are promising devices for improving the power conversion efficiency (PCE) of conventional solar cells by expanding the utilization region of the sunlight spectrum to near-infrared range. IR solar cells based on colloidal quantum dots (QDs) have attracted extensive attention due to the widely tunable absorption spectrum controlled by dot size and the unique solution processibility. However, the trade-off in QD solar cells between light absorption and photo-generated carrier collection has limited the further improvement of PCE. Here, we present high-performance PbS QD IR solar cells resulting from the combination of boosted light absorption and optimized carrier extraction. By constructing an optical resonance cavity, the light absorption is significantly enhanced in the range of 1,150–1,300 nm at a relatively thin photoactive layer. Meanwhile, the thin photoactive layer facilitates efficient carrier extraction. Consequently, the PbS QD IR solar cells exhibit a highly efficient photoelectric conversion in the IR region, resulting in a high IR PCE of 1.3% which is comparable to the highest value of solution-processed IR solar cells based on PbSe QDs. These results demonstrate that constructing an optical resonance cavity is a reasonable strategy for effective conversion of photons in the devices aiming at light in a relatively narrow wavelength range, such as IR solar cells and narrow band photodetectors.

Electronic Supplementary Material

Download File(s)
12274_2022_4906_MOESM1_ESM.pdf (842.1 KB)

References

[1]

Shi, G. Z.; Wang, H. B.; Zhang, Y. H.; Cheng, C.; Zhai, T. S.; Chen, B. T.; Liu, X. Y.; Jono, R.; Mao, X. N.; Liu, Y. et al. The effect of water on colloidal quantum dot solar cells. Nat. Commun. 2021, 12, 4381.

[2]

Sun, B.; Johnston, A.; Xu, C.; Wei, M. Y.; Huang, Z. R.; Jiang, Z.; Zhou, H.; Gao, Y. J.; Dong, Y. T.; Ouellette, O. et al. Monolayer perovskite bridges enable strong quantum dot coupling for efficient solar cells. Joule 2020, 4, 1542–1556.

[3]

Jia, D. L.; Chen, J. X.; Zheng, S. Y.; Phuyal, D.; Yu, M.; Tian, L.; Liu, J. H.; Karis, O.; Rensmo, H.; Johansson, E. M. J. et al. Highly stabilized quantum dot ink for efficient infrared light absorbing solar cells. Adv. Energy Mater. 2019, 9, 1902809.

[4]

Sytnyk, M.; Yakunin, S.; Schöfberger, W.; Lechner, R. T.; Burian, M.; Ludescher, L.; Killilea, N. A.; Yousefiamin, A.; Kriegner, D.; Stangl, J. et al. Quasi-epitaxial metal-halide perovskite ligand shells on PbS nanocrystals. ACS Nano 2017, 11, 1246–1256.

[5]

McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142.

[6]

Yang, Z. Y.; Voznyy, O.; Liu, M. X.; Yuan, M. J.; Ip, A. H.; Ahmed, O. S.; Levina, L.; Kinge, S.; Hoogland, S.; Sargent, E. H. All-quantum-dot infrared light-emitting diodes. ACS Nano 2015, 9, 12327–12333.

[7]

Tang, H. D.; Zhong, J. L.; Chen, W.; Shi, K. M.; Mei, G. D.; Zhang, Y. N.; Wen, Z. L.; Müller-Buschbaum, P.; Wu, D.; Wang, K. et al. Lead sulfide quantum dot photodetector with enhanced responsivity through a two-step ligand-exchange method. ACS Appl. Nano Mater. 2019, 2, 6135–6143.

[8]

Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013, 135, 5278–5281.

[9]

Yuan, M. J.; Liu, M. X.; Sargent, E. H. Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 2016, 1, 16016.

[10]

Chen, J. X.; Zheng, S. Y.; Jia, D. L.; Liu, W. L.; Andruszkiewicz, A.; Qin, C. C.; Yu, M.; Liu, J. H.; Johansson, E. M. J.; Zhang, X. L. Regulating thiol ligands of p-type colloidal quantum dots for efficient infrared solar cells. ACS Energy Lett. 2021, 6, 1970–1979.

[11]

Xia, Y.; Chen, W.; Zhang, P.; Liu, S. S.; Wang, K.; Yang, X. K.; Tang, H. D.; Lian, L. Y.; He, J. G.; Liu, X. X. et al. Facet control for trap-state suppression in colloidal quantum dot solids. Adv. Funct. Mater. 2020, 30, 2000594.

[12]

Choi, M. J.; García de Arquer, F. P.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M. X.; Sun, B.; Biondi, M. et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 2020, 11, 103.

[13]

Kim, H. I.; Baek, S. W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M. J.; Choi, K.; Biondi, M.; Hoogland, S.; García de Arquer, F. P. et al. A tuned alternating D-A copolymer hole-transport layer enables colloidal quantum dot solar cells with superior fill factor and efficiency. Adv. Mater. 2020, 32, e2004985.

[14]

Chuang, C. H. M.; Brown, P. R.; Bulovic, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

[15]

Liu, M. X.; Voznyy, O.; Sabatini, R.; García de Arquer, F. P.; Munir, R.; Balawi, A. H.; Lan, X. Z.; Fan, F. J.; Walters, G.; Kirmani, A. R. et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16, 258–263.

[16]

Xu, J. X.; Voznyy, O.; Liu, M. X.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; García de Arquer, F. P. et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 2018, 13, 456–462.

[17]

Fan, J. Z.; Andersen, N. T.; Biondi, M.; Todorović, P.; Sun, B.; Ouellette, O.; Abed, J.; Sagar, L. K.; Choi, M. J.; Hoogland, S. et al. Mixed lead halide passivation of quantum dots. Adv. Mater. 2019, 31, 1904304.

[18]

Fan, J. Z.; Vafaie, M.; Bertens, K.; Sytnyk, M.; Pina, J. M.; Sagar, L. K.; Ouellette, O.; Proppe, A. H.; Rasouli, A. S.; Gao, Y. J. et al. Micron thick colloidal quantum dot solids. Nano Lett. 2020, 20, 5284–5291.

[19]

Bi, Y.; Bertran, A.; Gupta, S.; Ramiro, I.; Pradhan, S.; Christodoulou, S.; Majji, S. N.; Akgul, M. Z.; Konstantatos, G. Solution processed infrared- and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots. Nanoscale 2019, 11, 838–843.

[20]

Jia, D. L.; Chen, J. X.; Qiu, J. M.; Ma, H. L.; Yu, M.; Liu, J. H.; Zhang, X. L. Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 2022, 6, 1632–1653.

[21]

Liu, M. X.; Che, F. L.; Sun, B.; Voznyy, O.; Proppe, A.; Munir, R.; Wei, M. Y.; Quintero-Bermudez, R.; Hu, L. L.; Hoogland, S. et al. Controlled steric hindrance enables efficient ligand exchange for stable, infrared-bandgap quantum dot inks. ACS Energy Lett. 2019, 4, 1225–1230.

[22]

Leem, J. W.; Yu, J. S.; Kim, J. N.; Noh, S. K. Theoretical modeling and optimization of III–V GaInP/GaAs/Ge monolithic triple-junction solar cells. J. Korean Phys. Soc. 2014, 64, 1561–1565.

[23]

Tang, X.; Ackerman, M. M.; Shen, G. H.; Guyot-Sionnest, P. Towards infrared electronic eyes: Flexible colloidal quantum dot photovoltaic detectors enhanced by resonant cavity. Small 2019, 15, 1804920.

[24]

Lei, W.; Antoszewski, J.; Faraone, L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl. Phys. Rev. 2015, 2, 041303.

[25]

Ip, A. H.; Kiani, A.; Kramer, I. J.; Voznyy, O.; Movahed, H. F.; Levina, L.; Adachi, M. M.; Hoogland, S.; Sargent, E. H. Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression. ACS Nano 2015, 9, 8833–8842.

[26]

Fan, J. Z.; Liu, M. X.; Voznyy, O.; Sun, B.; Levina, L.; Quintero-Bermudez, R.; Liu, M.; Ouellette, O.; García de Arquer, F. P.; Hoogland, S. et al. Halide re-shelled quantum dot inks for infrared photovoltaics. ACS Appl. Mater. Interfaces 2017, 9, 37536–37541.

[27]

Liu, S. S.; Xiong, K.; Wang, K.; Liang, G. J.; Li, M. Y.; Tang, H. D.; Yang, X. K.; Huang, Z.; Lian, L. Y.; Tan, M. L. et al. Efficiently passivated PbSe quantum dot solids for infrared photovoltaics. ACS Nano 2021, 15, 3376–3386.

[28]

Xia, Y.; Liu, S. S.; Wang, K.; Yang, X. K.; Lian, L. Y.; Zhang, Z. M.; He, J. G.; Liang, G. J.; Wang, S.; Tan, M. L. et al. Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 2020, 30, 1907379.

[29]

Kim, Y.; Che, F. L.; Jo, J. W.; Choi, J.; García de Arquer, F. P.; Voznyy, O.; Sun, B.; Kim, J.; Choi, M. J.; Quintero-Bermudez, R. et al. A Facet-specific quantum dot passivation strategy for colloid management and efficient infrared photovoltaics. Adv. Mater. 2019, 31, 1805580.

[30]

Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380–1384.

[31]

Jo, J. W.; Choi, J.; García de Arquer, F. P.; Seifitokaldani, A.; Sun, B.; Kim, Y.; Ahn, H.; Fan, J.; Quintero-Bermudez, R.; Kim, J. et al. Acid-assisted ligand exchange enhances coupling in colloidal quantum dot solids. Nano Lett. 2018, 18, 4417–4423.

[32]

Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X. H.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Grätzel, M. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 2010, 4, 3374–3380.

[33]

Carey, G. H.; Levina, L.; Comin, R.; Voznyy, O.; Sargent, E. H. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Adv. Mater. 2015, 27, 3325–3330.

[34]

Lan, X. Z.; Voznyy, O.; García de Arquer, F. P.; Liu, M. X.; Xu, J. X.; Proppe, A. H.; Walters, G.; Fan, F. J.; Tan, H. R.; Liu, M. et al. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett. 2016, 16, 4630–4634.

[35]

Sun, B.; Ouellette, O.; García de Arquer, F. P.; Voznyy, O.; Kim, Y.; Wei, M. Y.; Proppe, A. H.; Saidaminov, M. I.; Xu, J. X.; Liu, M. X. et al. Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. Nat. Commun. 2018, 9, 4003.

[36]

Georgitzikis, E.; Malinowski, P. E.; Maes, J.; Hadipour, A.; Hens, Z.; Heremans, P.; Cheyns, D. Optimization of charge carrier extraction in colloidal quantum dots short-wave infrared photodiodes through optical engineering. Adv. Funct. Mater. 2018, 28, 1804502.

[37]

Liu, S. S.; Zhang, C. J.; Li, S. Y.; Xia, Y.; Wang, K.; Xiong, K.; Tang, H. D.; Lian, L. Y.; Liu, X. X.; Li, M. Y. et al. Efficient infrared solar cells employing quantum dot solids with strong inter-dot coupling and efficient passivation. Adv. Funct. Mater. 2021, 31, 2006864.

[38]

Lian, L. Y.; Xia, Y.; Zhang, C. W.; Xu, B.; Yang, L.; Liu, H.; Zhang, D. L.; Wang, K.; Gao, J. B.; Zhang, J. B. In situ tuning the reactivity of selenium precursor to synthesize wide range size, ultralarge-scale, and ultrastable PbSe quantum dots. Chem. Mater. 2018, 30, 982–989.

[39]

Huang, Z.; Zhai, G. M.; Zhang, Z. M.; Zhang, C. W.; Xia, Y.; Lian, L. Y.; Fu, X. M.; Zhang, D. L.; Zhang, J. B. Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation. CrystEngComm 2017, 19, 946–951.

[40]

Willis, S. M.; Cheng, C.; Assender, H. E.; Watt, A. A. R. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells. Nano Lett. 2012, 12, 1522–1526.

[41]

Yang, X. K.; Hu, L.; Deng, H.; Qiao, K. K.; Hu, C.; Liu, Z. Y.; Yuan, S. J.; Khan, J.; Li, D. B.; Tang, J. et al. Improving the performance of PbS quantum dot solar cells by optimizing ZnO window layer. Nano-Micro Lett. 2017, 9, 24.

[42]

Grinolds, D. D. W.; Brown, P. R.; Harris, D. K.; Bulovic, V.; Bawendi, M. G. Quantum-dot size and thin-film dielectric constant: Precision measurement and disparity with simple models. Nano Lett. 2015, 15, 21–26.

[43]

Jia, D. L.; Chen, J. X.; Mei, X. Y.; Fan, W. T.; Luo, S.; Yu, M.; Liu, J. H.; Zhang, X. L. Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ. Sci. 2021, 14, 4599–4609.

[44]

Chen, J. X.; Jia, D. L.; Qiu, J. M.; Zhuang, R. S.; Hua, Y.; Zhang, X. L. Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells. Nano Energy 2022, 96, 107140.

[45]

Kim, J. K.; Song, J. H.; Choi, H.; Baik, S. J.; Jeong, S. Space charge limited conduction in ultrathin PbS quantum dot solid diodes. J. Appl. Phys. 2014, 115, 054302.

Nano Research
Pages 2392-2398
Cite this article:
Liu S, Li M-Y, Xiong K, et al. Efficient quantum dot infrared solar cells with enhanced low-energy photon conversion via optical engineering. Nano Research, 2023, 16(2): 2392-2398. https://doi.org/10.1007/s12274-022-4906-1
Topics:

1062

Views

10

Crossref

9

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 27 July 2022
Revised: 12 August 2022
Accepted: 14 August 2022
Published: 07 October 2022
© Tsinghua University Press 2022
Return