AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance carbon nanotube/polyaniline artificial yarn muscles working in biocompatible environments

Jian Qiao1,2,3,§Yulong Wu1,§Chengfeng Zhu1Lizhong Dong1Kunjie Wu1Yulian Wang1Wei Yang1Min Li3Jiangtao Di1( )Qingwen Li1( )
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
State Key Laboratory of Advanced Power Transmission Technology, State Grid Smart Grid Research Institute Co. Ltd., Beijing 102209, China
School of Materials Science and Engineering, Key Laboratory of Aerospace Materials and Performance, Ministry of Education, Beihang University, Beijing 100191, China

§ Jian Qiao and Yulong Wu contributed equally to this work.

Show Author Information

Graphical Abstract

A biocompatible and implantable carbon nanotube/polyaniline (CNT/PANI) yarn artificial muscle has been fabricated by a soaking-polymerization method. The muscle can effectively work and generate large stroke and stress under low driving voltage in biocompatible inorganic saline solutions and succus, which is suitable for bionic applications such as implantable muscles, soft exoskeletons, and underwater robots.

Abstract

Implantable artificial muscles are of great importance for muscle function restoration and physical augmentation but are still challenging. Herein, we report an artificial muscle by soaking-polymerization of polyaniline (PANI) inside a carbon nanotube (CNT) yarn. Working in aqueous biocompatible solutions, the yarn muscle generates a large contractile stroke of 17% and high isometric stress of 8 MPa at voltages lower than 2 V. The excellent performance can be ascribed to the large actuation volume that is enabled by the fast electrochemical redox of PANI confined in a coiled yarn structure. The actuation performance outperforms that of previously reported aqueous artificial yarn muscles. Moreover, the yarn muscle can work well and maintain excellent actuating performance in other biocompatible solutions such as normal saline and Na2SO4 aqueous solution, which makes the CNT/PANI yarn muscles suitable for implantable bionic applications. Finally, a biomimetic arm was fabricated to demonstrate the applications of the CNT/PANI yarn artificial muscle in implantable muscle, underwater robots, and soft exoskeletons.

Electronic Supplementary Material

Video
12274_2022_4910_MOESM1_ESM.mp4
12274_2022_4910_MOESM2_ESM.mp4
12274_2022_4910_MOESM3_ESM.mp4
12274_2022_4910_MOESM4_ESM.mp4
Download File(s)
12274_2022_4910_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Soto, F.; Karshalev, E.; Zhang, F. Y.; de Avila, B. E. F.; Nourhani, A.; Wang, J. Smart materials for microrobots. Chem. Rev. 2022, 122, 5365–5403.

[2]

Kim, Y.; Zhao, X. H. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317–5364.

[3]

Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E. O.; Marvi, H. Materials, actuators, and sensors for soft bioinspired robots. Adv. Mater. 2021, 33, 2003139.

[4]

Xiong, J. Q.; Chen, J.; Lee, P. S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 2021, 33, 2002640.

[5]

Spinks, G. M. Advanced actuator materials powered by biomimetic helical fiber topologies. Adv. Mater. 2020, 32, 1904093.

[6]

Mirvakili, S. M.; Hunter, I. W. Artificial muscles: Mechanisms, applications, and challenges. Adv. Mater. 2018, 30, 1704407.

[7]

Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670.

[8]

Zhu, Z. D.; Di, J. T.; Liu, X. Y.; Qin, J. Q.; Cheng, P. Coiled polymer fibers for artificial muscle and more applications. Matter 2022, 5, 1092–1103.

[9]

Heng, W. Z.; Solomon, S.; Gao, W. Flexible electronics and devices as human–machine interfaces for medical robotics. Adv. Mater. 2022, 34, 2107902.

[10]

Foroughi, J.; Spinks, G. M.; Wallace, G. G.; Oh, J.; Kozlov, M. E.; Fang, S. L.; Mirfakhrai, T.; Madden, J. D. W.; Shin, M. K.; Kim, S. J. et al. Torsional carbon nanotube artificial muscles. Science 2011, 334, 494–497.

[11]

Lee, J. A.; Kim, Y. T.; Spinks, G. M.; Suh, D.; Lepró, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. All-solid-state carbon nanotube torsional and tensile artificial muscles. Nano Lett. 2014, 14, 2664–2669.

[12]

Lee, J. A.; Li, N.; Haines, C. S.; Kim, K. J.; Lepró, X.; Ovalle-Robles, R.; Kim, S. J.; Baughman, R. H. Electrochemically powered, energy-conserving carbon nanotube artificial muscles. Adv. Mater. 2017, 29, 1700870.

[13]

Stoychev, G. V.; Ionov, L. Actuating fibers: Design and applications. ACS Appl. Mater. Interfaces 2016, 8, 24281–24294.

[14]

Lee, J. A.; Baughman, R. H.; Kim, S. J. High performance electrochemical and electrothermal artificial muscles from twist-spun carbon nanotube yarn. Nano Convergence 2015, 2, 8.

[15]

Mu, J. K.; de Andrade, M. J.; Fang, S. L.; Wang, X. M.; Gao, E. L.; Li, N.; Kim, S. H.; Wang, H. Z.; Hou, C. Y.; Zhang, Q. H. et al. Sheath-run artificial muscles. Science 2019, 365, 150–155.

[16]

Di, J. T.; Zhang, X. H.; Yong, Z. Z.; Zhang, Y. Y.; Li, D.; Li, R.; Li, Q. W. Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 2016, 28, 10529–10538.

[17]

Wang, Y. L.; Qiao, J.; Wu, K. J.; Yang, W.; Ren, M.; Dong, L. Z.; Zhou, Y. R.; Wu, Y. L.; Wang, X. N.; Yong, Z. Z. et al. High-twist-pervaded electrochemical yarn muscles with ultralarge and fast contractile actuations. Mater. Horiz. 2020, 7, 3043–3050.

[18]

Aziz, S.; Martinez, J. G.; Foroughi, J.; Spinks, G. M.; Jager, E. W. H. Artificial muscles from hybrid carbon nanotube-polypyrrole-coated twisted and coiled yarns. Macromol. Mater. Eng. 2020, 305, 2000421.

[19]

Qiao, J.; Di, J. T.; Zhou, S. S.; Jin, K. Y.; Zeng, S.; Li, N.; Fang, S. L.; Song, Y. H.; Li, M.; Baughman, R. H. et al. Large-stroke electrochemical carbon nanotube/graphene hybrid yarn muscles. Small 2018, 14, 1801883.

[20]

Baughman, R. H. Playing nature’s game with artificial muscles. Science 2005, 308, 63–65.

[21]

Otero, T. F.; Martinez, J. G. Electro-chemo-biomimetics from conducting polymers: Fundamentals, materials, properties and devices. J. Mater. Chem. B 2016, 4, 2069–2085.

[22]

Melling, D.; Martinez, J. G.; Jager, E. W. H. Conjugated polymer actuators and devices: Progress and opportunities. Adv. Mater. 2019, 31, 1808210.

[23]

Chu, H. T.; Hu, X. H.; Wang, Z.; Mu, J. K.; Li, N.; Zhou, X. S.; Fang, S. L.; Haines, C. S.; Park, J. W.; Qin, S. et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 2021, 371, 494–498.

[24]

Maziz, A.; Concas, A.; Khaldi, A.; Stålhand, J.; Persson, N. K.; Jager, E. W. H. Knitting and weaving artificial muscles. Sci. Adv. 2017, 3, e1600327.

[25]

Aziz, S.; Martinez, J. G.; Salahuddin, B.; Persson, N. K.; Jager, E. W. H. Fast and high-strain electrochemically driven yarn actuators in twisted and coiled configurations. Adv. Funct. Mater. 2021, 31, 2008959.

[26]

Di, J. T.; Hu, D. M.; Chen, H. Y.; Yong, Z. Z.; Chen, M. H.; Feng, Z. H.; Zhu, Y. T.; Li, Q. W. Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 2012, 6, 5457–5464.

[27]

Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.

[28]

Di, J. T.; Yong, Z. Z.; Yao, Z. J.; Liu, X. Y.; Shen, X. J.; Sun, B. Q.; Zhao, Z. G.; He, H. X.; Li, Q. W. Robust and aligned carbon nanotube/titania core/shell films for flexible TCO-free photoelectrodes. Small 2013, 9, 148–155.

[29]

Zheng, T.; Wang, X. D.; Liu, Y. Y.; Bayaniahangar, R.; Li, H. B.; Lu, C. R.; Xu, N.; Yao, Z. D.; Qiao, Y. J.; Zhang, D. X. et al. Polyaniline-decorated hyaluronic acid-carbon nanotube hybrid microfiber as a flexible supercapacitor electrode material. Carbon 2020, 159, 65–73.

[30]

Zeng, S.; Chen, H. Y.; Cai, F.; Kang, Y. R.; Chen, M. H.; Li, Q. W. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J. Mater. Chem. A 2015, 3, 23864–23870.

[31]

Benson, J.; Kovalenko, I.; Boukhalfa, S.; Lashmore, D.; Sanghadasa, M.; Yushin, G. Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices. Adv. Mater. 2013, 25, 6625–6632.

[32]

Tagowska, M.; Pałys, B.; Jackowska, K. Polyaniline nanotubules-anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy. Synth. Met. 2004, 142, 223–229.

[33]

Yang, P. P.; Xie, J. L.; Wang, L. L.; Chen, X. Y.; Wu, F. K.; Huang, Y. L. Coaxial cable-like carbon nanotubes-based active fibers for highly capacitive and stable supercapacitor. Adv. Mater. Interfaces 2020, 7, 2000949.

[34]

Saini, P.; Choudhary, V.; Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 2009, 113, 919–926.

[35]

Xu, J. J.; Wang, K.; Zu, S. Z.; Han, B. H.; Wei, Z. X. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 2010, 4, 5019–5026.

[36]

Ren, M.; Qiao, J.; Wang, Y. L.; Wu, K. J.; Dong, L. Z.; Shen, X. F.; Zhang, H. C.; Yang, W.; Wu, Y. L.; Yong, Z. Z. et al. Strong and robust electrochemical artificial muscles by ionic-liquid-in-nanofiber-sheathed carbon nanotube yarns. Small 2021, 17, 2006181.

[37]

Kim, K. J.; Hyeon, J. S.; Kim, H.; Mun, T. J.; Haines, C. S.; Li, N.; Baughman, R. H.; Kim, S. J. Enhancing the work capacity of electrochemical artificial muscles by coiling plies of twist-released carbon nanotube yarns. ACS Appl. Mater. Interfaces 2019, 11, 13533–13537.

[38]

Mirfakhrai, T.; Madden, J. D. W.; Baughman, R. H. Polymer artificial muscles. Mater. Today 2007, 10, 30–38.

[39]

Yang, X. H.; Wang, W. H.; Miao, M. H. Moisture-responsive natural fiber coil-structured artificial muscles. ACS Appl. Mater. Interfaces 2018, 10, 32256–32264.

[40]

Haines, C. S.; Lima, M. D.; Li. N.; Spinks, G. M.; Foroughi, J.; Madden, J. D. W.; Kim, S. H.; Fang, S. L.; de Andrade, M. J.; Göktepe, F. et al. Artificial muscles from fishing line and sewing thread. Science 2014, 343, 868–872.

[41]

Kim, S. H.; Haines, C. S.; Li, N.; Kim, K. J.; Mun, T. J.; Choi, C.; Di, J. T.; Oh, Y. J.; Oviedo, J. P.; Bykova, J. et al. Harvesting electrical energy from carbon nanotube yarn twist. Science 2017, 357, 773–778.

Nano Research
Pages 4143-4151
Cite this article:
Qiao J, Wu Y, Zhu C, et al. High-performance carbon nanotube/polyaniline artificial yarn muscles working in biocompatible environments. Nano Research, 2023, 16(3): 4143-4151. https://doi.org/10.1007/s12274-022-4910-5
Topics:
Part of a topical collection:

1063

Views

7

Crossref

9

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 27 May 2022
Revised: 29 July 2022
Accepted: 15 August 2022
Published: 17 September 2022
© Tsinghua University Press 2022
Return