Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Implantable artificial muscles are of great importance for muscle function restoration and physical augmentation but are still challenging. Herein, we report an artificial muscle by soaking-polymerization of polyaniline (PANI) inside a carbon nanotube (CNT) yarn. Working in aqueous biocompatible solutions, the yarn muscle generates a large contractile stroke of 17% and high isometric stress of 8 MPa at voltages lower than 2 V. The excellent performance can be ascribed to the large actuation volume that is enabled by the fast electrochemical redox of PANI confined in a coiled yarn structure. The actuation performance outperforms that of previously reported aqueous artificial yarn muscles. Moreover, the yarn muscle can work well and maintain excellent actuating performance in other biocompatible solutions such as normal saline and Na2SO4 aqueous solution, which makes the CNT/PANI yarn muscles suitable for implantable bionic applications. Finally, a biomimetic arm was fabricated to demonstrate the applications of the CNT/PANI yarn artificial muscle in implantable muscle, underwater robots, and soft exoskeletons.
Soto, F.; Karshalev, E.; Zhang, F. Y.; de Avila, B. E. F.; Nourhani, A.; Wang, J. Smart materials for microrobots. Chem. Rev. 2022, 122, 5365–5403.
Kim, Y.; Zhao, X. H. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317–5364.
Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E. O.; Marvi, H. Materials, actuators, and sensors for soft bioinspired robots. Adv. Mater. 2021, 33, 2003139.
Xiong, J. Q.; Chen, J.; Lee, P. S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 2021, 33, 2002640.
Spinks, G. M. Advanced actuator materials powered by biomimetic helical fiber topologies. Adv. Mater. 2020, 32, 1904093.
Mirvakili, S. M.; Hunter, I. W. Artificial muscles: Mechanisms, applications, and challenges. Adv. Mater. 2018, 30, 1704407.
Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670.
Zhu, Z. D.; Di, J. T.; Liu, X. Y.; Qin, J. Q.; Cheng, P. Coiled polymer fibers for artificial muscle and more applications. Matter 2022, 5, 1092–1103.
Heng, W. Z.; Solomon, S.; Gao, W. Flexible electronics and devices as human–machine interfaces for medical robotics. Adv. Mater. 2022, 34, 2107902.
Foroughi, J.; Spinks, G. M.; Wallace, G. G.; Oh, J.; Kozlov, M. E.; Fang, S. L.; Mirfakhrai, T.; Madden, J. D. W.; Shin, M. K.; Kim, S. J. et al. Torsional carbon nanotube artificial muscles. Science 2011, 334, 494–497.
Lee, J. A.; Kim, Y. T.; Spinks, G. M.; Suh, D.; Lepró, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. All-solid-state carbon nanotube torsional and tensile artificial muscles. Nano Lett. 2014, 14, 2664–2669.
Lee, J. A.; Li, N.; Haines, C. S.; Kim, K. J.; Lepró, X.; Ovalle-Robles, R.; Kim, S. J.; Baughman, R. H. Electrochemically powered, energy-conserving carbon nanotube artificial muscles. Adv. Mater. 2017, 29, 1700870.
Stoychev, G. V.; Ionov, L. Actuating fibers: Design and applications. ACS Appl. Mater. Interfaces 2016, 8, 24281–24294.
Lee, J. A.; Baughman, R. H.; Kim, S. J. High performance electrochemical and electrothermal artificial muscles from twist-spun carbon nanotube yarn. Nano Convergence 2015, 2, 8.
Mu, J. K.; de Andrade, M. J.; Fang, S. L.; Wang, X. M.; Gao, E. L.; Li, N.; Kim, S. H.; Wang, H. Z.; Hou, C. Y.; Zhang, Q. H. et al. Sheath-run artificial muscles. Science 2019, 365, 150–155.
Di, J. T.; Zhang, X. H.; Yong, Z. Z.; Zhang, Y. Y.; Li, D.; Li, R.; Li, Q. W. Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 2016, 28, 10529–10538.
Wang, Y. L.; Qiao, J.; Wu, K. J.; Yang, W.; Ren, M.; Dong, L. Z.; Zhou, Y. R.; Wu, Y. L.; Wang, X. N.; Yong, Z. Z. et al. High-twist-pervaded electrochemical yarn muscles with ultralarge and fast contractile actuations. Mater. Horiz. 2020, 7, 3043–3050.
Aziz, S.; Martinez, J. G.; Foroughi, J.; Spinks, G. M.; Jager, E. W. H. Artificial muscles from hybrid carbon nanotube-polypyrrole-coated twisted and coiled yarns. Macromol. Mater. Eng. 2020, 305, 2000421.
Qiao, J.; Di, J. T.; Zhou, S. S.; Jin, K. Y.; Zeng, S.; Li, N.; Fang, S. L.; Song, Y. H.; Li, M.; Baughman, R. H. et al. Large-stroke electrochemical carbon nanotube/graphene hybrid yarn muscles. Small 2018, 14, 1801883.
Baughman, R. H. Playing nature’s game with artificial muscles. Science 2005, 308, 63–65.
Otero, T. F.; Martinez, J. G. Electro-chemo-biomimetics from conducting polymers: Fundamentals, materials, properties and devices. J. Mater. Chem. B 2016, 4, 2069–2085.
Melling, D.; Martinez, J. G.; Jager, E. W. H. Conjugated polymer actuators and devices: Progress and opportunities. Adv. Mater. 2019, 31, 1808210.
Chu, H. T.; Hu, X. H.; Wang, Z.; Mu, J. K.; Li, N.; Zhou, X. S.; Fang, S. L.; Haines, C. S.; Park, J. W.; Qin, S. et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 2021, 371, 494–498.
Maziz, A.; Concas, A.; Khaldi, A.; Stålhand, J.; Persson, N. K.; Jager, E. W. H. Knitting and weaving artificial muscles. Sci. Adv. 2017, 3, e1600327.
Aziz, S.; Martinez, J. G.; Salahuddin, B.; Persson, N. K.; Jager, E. W. H. Fast and high-strain electrochemically driven yarn actuators in twisted and coiled configurations. Adv. Funct. Mater. 2021, 31, 2008959.
Di, J. T.; Hu, D. M.; Chen, H. Y.; Yong, Z. Z.; Chen, M. H.; Feng, Z. H.; Zhu, Y. T.; Li, Q. W. Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 2012, 6, 5457–5464.
Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.
Di, J. T.; Yong, Z. Z.; Yao, Z. J.; Liu, X. Y.; Shen, X. J.; Sun, B. Q.; Zhao, Z. G.; He, H. X.; Li, Q. W. Robust and aligned carbon nanotube/titania core/shell films for flexible TCO-free photoelectrodes. Small 2013, 9, 148–155.
Zheng, T.; Wang, X. D.; Liu, Y. Y.; Bayaniahangar, R.; Li, H. B.; Lu, C. R.; Xu, N.; Yao, Z. D.; Qiao, Y. J.; Zhang, D. X. et al. Polyaniline-decorated hyaluronic acid-carbon nanotube hybrid microfiber as a flexible supercapacitor electrode material. Carbon 2020, 159, 65–73.
Zeng, S.; Chen, H. Y.; Cai, F.; Kang, Y. R.; Chen, M. H.; Li, Q. W. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J. Mater. Chem. A 2015, 3, 23864–23870.
Benson, J.; Kovalenko, I.; Boukhalfa, S.; Lashmore, D.; Sanghadasa, M.; Yushin, G. Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices. Adv. Mater. 2013, 25, 6625–6632.
Tagowska, M.; Pałys, B.; Jackowska, K. Polyaniline nanotubules-anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy. Synth. Met. 2004, 142, 223–229.
Yang, P. P.; Xie, J. L.; Wang, L. L.; Chen, X. Y.; Wu, F. K.; Huang, Y. L. Coaxial cable-like carbon nanotubes-based active fibers for highly capacitive and stable supercapacitor. Adv. Mater. Interfaces 2020, 7, 2000949.
Saini, P.; Choudhary, V.; Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 2009, 113, 919–926.
Xu, J. J.; Wang, K.; Zu, S. Z.; Han, B. H.; Wei, Z. X. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 2010, 4, 5019–5026.
Ren, M.; Qiao, J.; Wang, Y. L.; Wu, K. J.; Dong, L. Z.; Shen, X. F.; Zhang, H. C.; Yang, W.; Wu, Y. L.; Yong, Z. Z. et al. Strong and robust electrochemical artificial muscles by ionic-liquid-in-nanofiber-sheathed carbon nanotube yarns. Small 2021, 17, 2006181.
Kim, K. J.; Hyeon, J. S.; Kim, H.; Mun, T. J.; Haines, C. S.; Li, N.; Baughman, R. H.; Kim, S. J. Enhancing the work capacity of electrochemical artificial muscles by coiling plies of twist-released carbon nanotube yarns. ACS Appl. Mater. Interfaces 2019, 11, 13533–13537.
Mirfakhrai, T.; Madden, J. D. W.; Baughman, R. H. Polymer artificial muscles. Mater. Today 2007, 10, 30–38.
Yang, X. H.; Wang, W. H.; Miao, M. H. Moisture-responsive natural fiber coil-structured artificial muscles. ACS Appl. Mater. Interfaces 2018, 10, 32256–32264.
Haines, C. S.; Lima, M. D.; Li. N.; Spinks, G. M.; Foroughi, J.; Madden, J. D. W.; Kim, S. H.; Fang, S. L.; de Andrade, M. J.; Göktepe, F. et al. Artificial muscles from fishing line and sewing thread. Science 2014, 343, 868–872.
Kim, S. H.; Haines, C. S.; Li, N.; Kim, K. J.; Mun, T. J.; Choi, C.; Di, J. T.; Oh, Y. J.; Oviedo, J. P.; Bykova, J. et al. Harvesting electrical energy from carbon nanotube yarn twist. Science 2017, 357, 773–778.