AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Regulating electronic structure of porous nickel nitride nanosheet arrays by cerium doping for energy-saving hydrogen production coupling hydrazine oxidation

Rui-Qing Li1( )Suyuan Zeng2Bin Sang2Chaozhuang Xue2Konggang Qu2Yu Zhang1Wei Zhang1Guangyu Zhang1Xinghui Liu3( )Jie Deng4Olivier Fontaine5,6( )Yachao Zhu7( )
School of Textile and Clothing, Nantong University, Nantong 226019, China
School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
Department of Chemistry, Sungkyunkwan University, Jangan-Gu, Suwon 16419, Republic of Korea
Institute for Advanced Study & College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
Molecular Electrochemistry for Energy laboratory, VISTEC, Rayong 21210, Thailand
Institut Universitaire de France, 75005 Paris, France
ICGM, Université de Montpellier, CNRS, 34293 Montpellier, France
Show Author Information

Graphical Abstract

To endow Ni3N with energy-saving H2 production, Ce-doped Ni3N porous nanosheet arrays support on nickel foam (NF) are rationally synthesized and exhibit remarkable bifunctional catalytic performance for both hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR). The experiments and theoretical calculations reveal that Ce doping optimizes the hydrogen adsorption free energy and therefore boosts the catalytic activity.

Abstract

Water electrolysis for energy-efficient H2 production coupled with hydrazine oxidation reaction (HzOR) is prevailing, while the sluggish electrocatalysts are strongly hindering its scalable application. Herein, we schemed a novel porous Ce-doped Ni3N nanosheet arrays grown on nickel foam (Ce-Ni3N/NF) as a remarkable bifunctional catalyst for both hydrogen evolution reaction and HzOR. Significantly, the overall hydrazine splitting system can achieve low cell voltages of 0.156 and 0.671 V at 10 and 400 mA·cm−2, and the system is remarkably stable to operate over 100 h continuous test at the high-current-density of 400 mA·cm−2. Various characterizations prove that the porous nanosheet arrays expose more active sites, and more excellent diffusion kinetics and lower charge-transfer resistance, therefore boosting catalytic performance. Furthermore, density functional theory calculation reveals that the incorporation of Ce can effectively optimize the free energy of hydrogen adsorption and promote intrinsic catalytic activity of Ni3N.

Electronic Supplementary Material

Download File(s)
12274_2022_4912_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Lubitz, W.; Tumas, W. Hydrogen:  An overview. Chem. Rev. 2007, 107, 3900–3903.

[3]

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

[4]

Wang, Z. M.; Shen, Z. Y.; Li, Y. M.; Zuo, J. L. Preparation and photoelectrocatalytic performance of Ru loaded TiO2 nanotubes. Chin. J. Rare Metals 2020, 44, 609–615.

[5]

Zhang, J. Y.; Wang, H. M.; Tian, Y. F.; Yan, Y.; Xue, Q.; He, T.; Liu, H. F.; Wang, C. D.; Chen, Y.; Xia, B. Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem., Int. Ed. 2018, 57, 7649–7653.

[6]

Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

[7]

Shen, F.; Wang, Z. L.; Wang, Y. M.; Qian, G. F.; Pan, M. J.; Luo, L.; Chen, G. N.; Wei, H. L.; Yin, S. B. Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density. Nano Res. 2021, 14, 4356–4361.

[8]

Li, R. Q.; Wan, X. Y.; Chen, B. L.; Cao, R. Y.; Ji, Q. H.; Deng, J.; Qu, K. G.; Wang, X. B.; Zhu, Y. C. Hierarchical Ni3N/Ni0.2Mo0. 8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis. Chem. Eng. J. 2021, 409, 128240.

[9]

Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.

[10]

Feng, G.; An, L.; Li, B.; Zuo, Y. X.; Song, J.; Ning, F. H.; Jiang, N.; Cheng, X. P.; Zhang, Y. F.; Xia, D. G. Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation. Nat. Commun. 2019, 10, 4514.

[11]

Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 133, 6049–6058.

[12]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[13]

Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe, Ni)S2 core–shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

[14]

Yan, Y. X.; Chen, G. R.; She, P. H.; Zhong, G. Y.; Yan, W. F.; Guan, B. Y.; Yamauchi, Y. Mesoporous nanoarchitectures for electrochemical energy conversion and storage. Adv. Mater. 2020, 32, 2004654.

[15]

Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z. G.; Yin, H. M.; Bi, X. F.; Yang, S. B. Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.

[16]

Zhang, Z. P.; Niu, J. J.; Yang, P. F.; Gong, Y.; Ji, Q. Q.; Shi, J. P.; Fang, Q. Y.; Jiang, S. L.; Li, H.; Zhou, X. B. et al. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater. 2017, 29, 1702359.

[17]

Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.

[18]

Li, R. Q.; Hu, P. F.; Miao, M.; Li, Y. L.; Jiang, X. F.; Wu, Q.; Meng, Z.; Hu, Z.; Bando, Y.; Wang, X. B. CoO-modified Co4N as a heterostructured electrocatalyst for highly efficient overall water splitting in neutral media. J. Mater. Chem. A 2018, 6, 24767–24772.

[19]
Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.
[20]

Zhang, H.; Xi, B. J.; Gu, Y.; Chen, W. H.; Xiong, S. L. Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473.

[21]

Jin, H. Y.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 2018, 12, 12761–12769.

[22]

Li, R. Q.; Liu, Q.; Zhou, Y. N.; Lu, M. J.; Hou, J. L.; Qu, K. G.; Zhu, Y. C.; Fontaine, O. 3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis. J. Mater. Chem. A 2021, 9, 4159–4166.

[23]

Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119–4125.

[24]

Gao, D. Q.; Zhang, J. Y.; Wang, T. T.; Xiao, W.; Tao, K.; Xue, D. S.; Ding, J. Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J. Mater. Chem. A 2016, 4, 17363–17369.

[25]

Li, R. Q.; Liu, Y. L.; Zhang, N. N.; Li, L. L.; Liu, L.; Liang, Y. M.; Gan, S. C. Shape controllable synthesis and multicolour fluorescence of lanthanide doped vernier yttrium oxyfluoride. J. Mater. Chem. C 2015, 3, 3928–3934.

[26]

Wang, J.; Gong, Z. J.; Xu, G. D.; Wu, W. F. Experimental study on catalytic performance of CO reduction and denitrification of rare earth tailings. Chin. J. Rare Metals 2020, 44, 1301–1307.

[27]

Lu, M. J.; Chen, D.; Wang, B. R.; Li, R. Q.; Cai, D.; Tu, H. R.; Yang, H.; Zhang, Y. P.; Han, W. Boosting alkaline hydrogen evolution performance of Co4N porous nanowires by interface engineering of CeO2 tuning. J. Mater. Chem. A 2021, 9, 1655–1662.

[28]

Li, R. Q.; Zi, W. W.; Li, L. L.; Liu, L.; Zhang, J. J.; Zou, L. C.; Gan, S. C. Monodisperse and hollow structured Y2O3: Ln3+ (Ln = Eu, Dy, Er, Tm) nanospheres: A facile synthesis and multicolor-tunable luminescence properties. J. Alloys Compd. 2014, 617, 498–504.

[29]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[30]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[31]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[32]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin–zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[33]

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505–1509.

[34]

Jain, A.; Hautier, G.; Ong, S. P.; Moore, C. J.; Fischer, C. C.; Persson, K. A.; Ceder, G. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 2011, 84, 045115.

[35]

Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411–419.

[36]

Yu, M. H.; Wang, Z. K.; Hou, C.; Wang, Z. L.; Liang, C. L.; Zhao, C. Y.; Tong, Y. X.; Lu, X. H.; Yang, S. H. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1602868.

[37]

Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.

[38]

Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Xu, L.; Tang, Y. W.; Goodenough, J. B. Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy 2017, 39, 77–85.

[39]

Kim, J.; Kim, H.; Lee, W. J.; Ruqia, B.; Baik, H.; Oh, H. S.; Paek, S. M.; Lim, H. K.; Choi, C. H.; Choi, S. I. Theoretical and experimental understanding of hydrogen evolution reaction kinetics in alkaline electrolytes with Pt-based core–shell nanocrystals. J. Am. Chem. Soc. 2019, 141, 18256–18263.

[40]

Huang, Y. F.; Nielsen, R. J.; Goddard III, W. A. Reaction mechanism for the hydrogen evolution reaction on the basal plane sulfur vacancy site of MoS2 using grand canonical potential kinetics. J. Am. Chem. Soc. 2018, 140, 16773–16782.

[41]

Hou, J. G.; Sun, Y. Q.; Li, Z. W.; Zhang, B.; Cao, S. Y.; Wu, Y. Z.; Gao, Z. M.; Sun, L. C. Electrical behavior and electron transfer modulation of nickel-copper nanoalloys confined in nickel-copper nitrides nanowires array encapsulated in nitrogen-doped carbon framework as robust bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. 2018, 28, 1803278.

[42]

Chen, G. B.; Wang, T.; Zhang, J.; Liu, P.; Sun, H. J.; Zhuang, X. D.; Chen, M. M.; Feng, X. L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.

[43]

Li, R. Q.; Wang, B. L.; Gao, T.; Zhang, R.; Xu, C. Y.; Jiang, X. F.; Zeng, J. J.; Bando, Y.; Hu, P. F.; Li, Y. L. et al. Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting. Nano Energy 2019, 58, 870–876.

[44]

Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 2019, 9, 1803369.

Nano Research
Pages 2543-2550
Cite this article:
Li R-Q, Zeng S, Sang B, et al. Regulating electronic structure of porous nickel nitride nanosheet arrays by cerium doping for energy-saving hydrogen production coupling hydrazine oxidation. Nano Research, 2023, 16(2): 2543-2550. https://doi.org/10.1007/s12274-022-4912-3
Topics:

863

Views

26

Crossref

28

Web of Science

29

Scopus

3

CSCD

Altmetrics

Received: 08 June 2022
Revised: 03 August 2022
Accepted: 15 August 2022
Published: 14 September 2022
© Tsinghua University Press 2022
Return