AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review

Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection

Yuna Zhang1Cuili Xue1Yuli Xu1Shengsheng Cui1Alexander A. Ganeev2Kistenev Yury V.3Anna Gubal2Victoria Chuchina2Han Jin1,4( )Daxiang Cui1,4( )
Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russia
Tomsk State University, Lenina Av. 36, Tomsk, Tomsk 634050, Russia
National Engineering Research Center for Nanotechnology, Shanghai 200241, China
Show Author Information

Graphical Abstract

Representative synthesis strategies of MOFs to fabricate SERS-active substrates are summarized and their applications in ultra-sensitive biomedical trace detection are also reviewed.

Abstract

Metal-organic frameworks (MOFs) have attracted widespread interest due to their unique and unprecedented advantages in microstructures and properties. Besides, surface-enhanced Raman scattering (SERS) technology has also rapidly developed into a powerful fingerprint spectroscopic technique that can provide rapid, non-invasive, non-destructive, and ultra-sensitive detection, even down to single molecular level. Consequently, a considerable amount of researchers combined MOFs with the SERS technique to further improve the sensing performance and broaden the applications of SERS substrates. Herein, representative synthesis strategies of MOFs to fabricate SERS-active substrates are summarized and their applications in ultra-sensitive biomedical trace detection are also reviewed. Besides, relative barriers, advantages, disadvantages, future trends, and prospects are particularly discussed to give guidance to relevant researchers.

References

[1]

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

[2]

Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2019, 4, 60–67.

[3]

Papazoglou, E. S.; Babu, S.; Mohapatra, S.; Hansberry, D. R.; Patel, C. Identification of binding interactions between myeloperoxidase and its antibody using SERS. Nano-Micro Lett. 2010, 2, 74–82.

[4]

Yang, Y.; Peng, Y. S.; Lin, C. L.; Long, L.; Hu, J. Y.; He, J.; Zeng, H.; Huang, Z. R.; Li, Z. Y.; Tanemura, M. et al. Human ACE2-functionalized gold “Virus-Trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Lett. 2021, 13, 109.

[5]

Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.

[6]

Fan, M. K.; Andrade, G. F. S.; Brolo, A. G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2020, 1097, 1–29.

[7]
Othman, N. H.; Lee, K. Y.; Radzol, A. R. M.; Mansor, W.; Ramlan, N. N. M. Linear discriminant analysis for detection of salivary NS1 from SERS spectra. In TENCON 20172017 IEEE Region 10 Conference, Penang, 2017, pp 2876–2879.
[8]

Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250.

[9]

Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem., Int. Ed. 2014, 53, 4756–4795.

[10]

Nam, J. M.; Oh, J. W.; Lee, H.; Suh, Y. D. Plasmonic nanogap-enhanced Raman scattering with nanoparticles. Acc. Chem. Res. 2016, 49, 2746–2755.

[11]

Demirel, G.; Usta, H.; Yilmaz, M.; Celik, M.; Alidagi, H. A.; Buyukserin, F. Surface-enhanced Raman spectroscopy (SERS): An adventure from plasmonic metals to organic semiconductors as SERS platforms. J. Mater. Chem. C 2018, 6, 5314–5335.

[12]

Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961.

[13]

Chen, Y. S.; Zhang, Y. X.; Pan, F.; Liu, J.; Wang, K.; Zhang, C. L.; Cheng, S. L.; Lu, L. G.; Zhang, W.; Zhang, Z. et al. Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons. ACS Nano 2016, 10, 8169–8179.

[14]

Butova, V. V.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C. Metal-organic frameworks: Structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 2016, 85, 280–307.

[15]

Meng, J. S.; Liu, X.; Niu, C. J.; Pang, Q.; Li, J. T.; Liu, F.; Liu, Z. A.; Mai, L. Q. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186.

[16]

Chen, B.; Kim, D.; Zhang, Z.; Lee, M.; Yong, K. MOF-derived NiCoZnP nanoclusters anchored on hierarchical N-doped carbon nanosheets array as bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 422, 130533.

[17]

Kundu, T.; Wahiduzzaman, M.; Shah, B. B.; Maurin, G.; Zhao, D. Solvent-induced control over breathing behavior in flexible metal-organic frameworks for natural-gas delivery. Angew. Chem., Int. Ed. 2019, 58, 8073–8077.

[18]

Ren, Y. F.; He, Z. L.; Zhao, H. Z.; Zhu, T. Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Met. 2022, 41, 830–835.

[19]

Qiu, S. L.; Xue, M.; Zhu, G. S. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140.

[20]

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

[21]

Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011, 23, 249–267.

[22]

Qiao, X. Z.; Su, B. S.; Liu, C.; Song, Q.; Luo, D.; Mo, G.; Wang, T. Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure. Adv. Mater. 2018, 30, 1702275.

[23]

Men, D. D.; Feng, S. J.; Liu, G. Q.; Hang, L. F.; Zhang, T. A sensitive “optical nose” for detection of volatile organic molecules based on Au@MOFs nanoparticle arrays through surface-enhanced Raman scattering. Part. Part. Syst. Charact. 2020, 37, 1900452.

[24]

Kreno, L. E.; Greeneltch, N. G.; Farha, O. K.; Hupp, J. T.; Van Duyne, R. P. SERS of molecules that do not adsorb on Ag surfaces: A metal-organic framework-based functionalization strategy. Analyst 2014, 139, 4073–4080.

[25]

Koh, C. S. L.; Lee, H. K.; Han, X. M.; Sim, H. Y. F.; Ling, X. Y. Plasmonic nose: Integrating the MOF-enabled molecular preconcentration effect with a plasmonic array for recognition of molecular-level volatile organic compounds. Chem. Commun. 2018, 54, 2546–2549.

[26]

Fu, J. H.; Zhong, Z.; Xie, D.; Guo, Y. J.; Kong, D. X.; Zhao, Z. X.; Zhao, Z. X.; Li, M. SERS-active MIL-100(Fe) sensory array for ultrasensitive and multiplex detection of VOCs. Angew. Chem., Int. Ed. 2020, 59, 20489–20498.

[27]

Chen, Q. Q.; Hou, R. N.; Zhu, Y. Z.; Wang, X. T.; Zhang, H.; Zhang, Y. J.; Zhang, L.; Tian, Z. Q.; Li, J. F. Au@ZIF-8 core–shell nanoparticles as a SERS substrate for volatile organic compound gas detection. Anal. Chem. 2021, 93, 7188–7195.

[28]

Fan, Q. K.; Liu, T. Z.; Li, H. S.; Zhang, S. M.; Liu, K.; Gao, C. B. Gold/oxide heterostructured nanoparticles for enhanced SERS sensitivity and reproducibility. Rare Met. 2020, 39, 834–840.

[29]

Yu, T. H.; Ho, C. H.; Wu, C. Y.; Chien, C. H.; Lin, C. H.; Lee, S. Metal-organic frameworks: A novel SERS substrate. J. Raman Spectrosc. 2013, 44, 1506–1511.

[30]

Sun, H. J.; Yu, B.; Pan, X.; Zhu, X. B.; Liu, Z. C. Recent progress in metal-organic frameworks-based materials toward surface-enhanced Raman spectroscopy. Appl. Spectrosc. Rev. 2022, 57, 513–528.

[31]

Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.

[32]

Liu, Z. G.; Gao, Y.; Jin, L.; Jin, H.; Xu, N.; Yu, X. Y.; Yu, S. H. Core–shell regeneration magnetic molecularly imprinted polymers-based SERS for sibutramine rapid detection. ACS Sustainable Chem. Eng. 2019, 7, 8168–8175.

[33]

Huang, C. H.; Li, A. L.; Chen, X. Y.; Wang, T. Understanding the role of metal-organic frameworks in surface-enhanced Raman scattering application. Small 2020, 16, 2004802.

[34]

Sun, H. Z.; Cong, S.; Zheng, Z. H.; Wang, Z.; Chen, Z. G.; Zhao, Z. G. Metal-organic frameworks as surface enhanced Raman scattering substrates with high tailorability. J. Am. Chem. Soc. 2019, 141, 870–878.

[35]

Sun, H. Z.; Gong, W. B.; Cong, S.; Liu, C. L.; Song, G.; Lu, W. B.; Zhao, Z. G. Ultrathin two-dimensional metal-organic framework nanosheets with activated ligand-cluster units for enhanced SERS. ACS Appl. Mater. Interfaces 2022, 14, 2326–2334.

[36]

Liao, J.; Wang, D. M.; Liu, A. Q.; Hu, Y. L.; Li, G. K. Controlled stepwise-synthesis of core–shell Au@MIL-100 (Fe) nanoparticles for sensitive surface-enhanced Raman scattering detection. Analyst 2015, 140, 8165–8171.

[37]

Xu, F. G.; Shang, W. J.; Ma, G. R.; Zhu, Y. M.; Wu, M. J. Metal organic framework wrapped gold nanourchin assembled on filter membrane for fast and sensitive SERS analysis. Sens. Actuators B:Chem. 2021, 326, 128968.

[38]

Wang, X.; Wang, Y. X.; Ying, Y. B. Recent advances in sensing applications of metal nanoparticle/metal-organic framework composites. TrAC Trends Anal. Chem. 2021, 143, 116395.

[39]

Cai, Y. Z.; Wu, Y. P.; Xuan, T.; Guo, X. Y.; Wen, Y.; Yang, H. F. Core–shell Au@Metal-organic frameworks for promoting Raman detection sensitivity of methenamine. ACS Appl. Mater. Interfaces 2018, 10, 15412–15417.

[40]

Li, J.; Liu, Z. F.; Tian, D. H.; Li, B. J.; Shao, L.; Lou, Z. Z. Assembly of gold nanorods functionalized by zirconium-based metal-organic frameworks for surface enhanced Raman scattering. Nanoscale 2022, 14, 5561–5568.

[41]

Lafuente, M.; De Marchi, S.; Urbiztondo, M.; Pastoriza-Santos, I.; Pérez-Juste, I.; Santamaría, J.; Mallada, R.; Pina, M. Plasmonic MOF thin films with Raman internal standard for fast and ultrasensitive SERS detection of chemical warfare agents in ambient air. ACS Sens. 2021, 6, 2241–2251.

[42]

Xia, Z. P.; Li, D.; Deng, W. Identification and detection of volatile aldehydes as lung cancer biomarkers by vapor generation combined with paper-based thin-film microextraction. Anal. Chem. 2021, 93, 4924–4931.

[43]

Zheng, G. C.; De Marchi, S.; López-Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez-Juste, I.; Hill, E. H.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I. et al. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935–3943.

[44]

He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core–shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

[45]

Hu, P.; Zhuang, J.; Chou, L. Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y. C.; Tsung, C. K. Surfactant-directed atomic to mesoscale alignment: Metal nanocrystals encased individually in single-crystalline porous nanostructures. J. Am. Chem. Soc. 2014, 136, 10561–10564.

[46]

Zhang, Y. S.; Hu, Y. F.; Li, G. K.; Zhang, R. K. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy. Microchim. Acta 2019, 186, 477.

[47]

Zhai, Y.; Xuan, T.; Wu, Y. P.; Guo, X. Y.; Ying, Y.; Wen, Y.; Yang, H. F. Metal-organic-frameworks-enforced surface enhanced Raman scattering chip for elevating detection sensitivity of carbendazim in seawater. Sens. Actuators B: Chem. 2021, 326, 128852.

[48]

Li, Q. Q.; Gong, S. S.; Zhang, H.; Huang, F. Z.; Zhang, L. N.; Li, S. K. Tailored necklace-like Ag@ZIF-8 core/shell heterostructure nanowires for high-performance plasmonic SERS detection. Chem. Eng. J. 2019, 371, 26–33.

[49]

Xue, X. X.; Chen, L.; Wang, C. X.; Qiao, Y.; Zhao, C. M.; Wang, H. R.; Nie, P.; Li, J. H.; Zhao, J. F.; Chang, L. M. Controlled synthesis of a PS/Au/ZIF-8 hybrid structure as a SERS substrate for ultrasensitive detection. New J. Chem. 2021, 45, 1355–1362.

[50]

Hu, P.; Morabito, J. V.; Tsung, C. K. Core–shell catalysts of metal nanoparticle core and metal-organic framework shell. ACS Catal. 2014, 4, 4409–4419.

[51]

Wang, P. X.; Sun, Y.; Li, X.; Wang, L.; Xu, Y.; Li, G. L. Recent advances in metal organic frameworks based surface enhanced Raman scattering substrates: Synthesis and applications. Molecules 2021, 26, 209.

[52]

Liu, S.; Huo, Y. P.; Deng, S. M.; Li, G. H.; Li, S.; Huang, L.; Ren, S. Y.; Gao, Z. X. A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin. Biosens. Bioelectron. 2022, 201, 113891.

[53]

Jiang, Z. W.; Gao, P. F.; Yang, L.; Huang, C. Z.; Li, Y. F. Facile in situ synthesis of silver nanoparticles on the surface of metal-organic framework for ultrasensitive surface-enhanced Raman scattering detection of dopamine. Anal. Chem. 2015, 87, 12177–12182.

[54]

Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J. J. X.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558–5566.

[55]

Wu, L. L.; Pu, H. B.; Huang, L. J.; Sun, D. W. Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food. Food Chem. 2020, 328, 127105.

[56]

Hu, Y. L.; Liao, J.; Wang, D. M.; Li, G. K. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Anal. Chem. 2014, 86, 3955–3963.

[57]

Shao, Q. C.; Zhang, D.; Wang, C. E.; Tang, Z. X.; Zou, M. Q.; Yang, X. B.; Gong, H. P.; Yu, Z.; Jin, S. Z.; Liang, P. Ag@MIL-101(Cr) film substrate with high SERS enhancement effect and uniformity. J. Phys. Chem. C 2021, 125, 7297–7304.

[58]

Yang, Z. C.; Liu, T.; Wang, W.; Zhang, L. M. Stacked hexagonal prism of Ag@Ni-MOF-1 as functionalized SERS platform through rational integration of catalytic synthesis of dopamine-quinone at physiological pH with a biomimetic route. Chem. Commun. 2020, 56, 3065–3068.

[59]

Sugikawa, K.; Furukawa, Y.; Sada, K. SERS-active metal-organic frameworks embedding gold nanorods. Chem. Mater. 2011, 23, 3132–3134.

[60]

Zhang, Y. N.; Xue, C. L.; Li, P.; Cui, S. S.; Cui, D. X.; Jin, H. Metal-organic framework engineered corn-like SERS active Ag@Carbon with controllable spacing distance for tracking trace amount of organic compounds. J. Hazard. Mater. 2022, 424, 127686.

[61]

Su, G. W.; Dang, L. P.; Liu, G. Z.; Feng, T. Y.; Wang, W.; Wang, C. G.; Wei, H. Y. MOF-Derived hierarchical porous 3D ZnO/Ag nanostructure as a reproducible SERS substrate for ultrasensitive detection of multiple environmental pollutants. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2022, 270, 120818.

[62]

Guselnikova, O.; Lim, H.; Na, J.; Eguchi, M.; Kim, H. J.; Elashnikov, R.; Postnikov, P.; Svorcik, V.; Semyonov, O.; Miliutina, E. et al. Enantioselective SERS sensing of pseudoephedrine in blood plasma biomatrix by hierarchical mesoporous Au films coated with a homochiral MOF. Biosens. Bioelectron. 2021, 180, 113109.

[63]

Guselnikova, O.; Postnikov, P.; Kolska, Z.; Zaruba, K.; Kohout, M.; Elashnikov, R.; Svorcik, V.; Lyutakov, O. Homochiral metal-organic frameworks functionalized SERS substrate for atto-molar enantio-selective detection. Appl. Mater. Today 2020, 20, 100666.

[64]

Lu, Y. Z. H.; Zhang, H. C.; Chan, J. Y.; Ou, R. W.; Zhu, H. J.; Forsyth, M.; Marijanovic, E. M.; Doherty, C. M.; Marriott, P. J.; Holl, M. M. B. et al. Homochiral MOF-polymer mixed matrix membranes for efficient separation of chiral molecules. Angew. Chem., Int. Ed. 2019, 58, 16928–16935.

[65]

Cardinal, M. F.; Ende, E. V.; Hackler, R. A.; McAnally, M. O.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. Expanding applications of SERS through versatile nanomaterials engineering. Chem. Soc. Rev. 2017, 46, 3886–3903.

[66]

Chen, X.; Xu, F. J.; Wang, Y.; Pan, Y. F.; Lu, D. J.; Wang, P.; Ying, K. J.; Chen, E. G.; Zhang, W. M. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 2007, 110, 835–844.

[67]

Lai, H. S.; Li, G. K.; Xu, F. G.; Zhang, Z. M. Metal-organic frameworks: Opportunities and challenges for surface-enhanced Raman scattering—A review. J. Mater. Chem. C 2020, 8, 2952–2963.

[68]

Sharma, B.; Bugga, P.; Madison, L. R.; Henry, A. I.; Blaber, M. G.; Greeneltch, N. G.; Chiang, N.; Mrksich, M.; Schatz, G. C.; Van Duyne, R. P. Bisboronic acids for selective, physiologically relevant direct glucose sensing with surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2016, 138, 13952–13959.

[69]

Feng, J.; Lu, H.; Yang, Y.; Huang, W. Y.; Cheng, H.; Kong, H. X.; Li, L. J. SERS-ELISA determination of human carboxylesterase 1 using metal-organic framework doped with gold nanoparticles as SERS substrate. Microchim. Acta 2021, 188, 280.

[70]

Ding, Q. Q.; Wang, J.; Chen, X. Y.; Liu, H.; Li, Q. J.; Wang, Y. L.; Yang, S. K. Quantitative and sensitive SERS platform with analyte enrichment and filtration function. Nano Lett. 2020, 20, 7304–7312.

[71]

Das, A.; Choi, N.; Moon, J. I.; Choo, J. Determination of total iron-binding capacity of transferrin using metal organic framework-based surface-enhanced Raman scattering spectroscopy. J. Raman Spectrosc. 2021, 52, 506–515.

[72]

He, Y.; Wang, Y.; Yang, X.; Xie, S. B.; Yuan, R.; Chai, Y. Q. Metal organic frameworks combining CoFe2O4 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of N-terminal pro-brain natriuretic peptide. ACS Appl. Mater. Interfaces 2016, 8, 7683–7690.

[73]

Ahi, E. E.; Torul, H.; Zengin, A.; Sucularlı, F.; Yıldırım, E.; Selbes, Y.; Suludere, Z.; Tamer, U. A capillary driven microfluidic chip for SERS based hCG detection. Biosens. Bioelectron. 2022, 195, 113660.

[74]

Hu, S.; Jiang, Y. N.; Wu, Y. P.; Guo, X. Y.; Ying, Y.; Wen, Y.; Yang, H. F. Enzyme-free tandem reaction strategy for surface-enhanced Raman scattering detection of glucose by using the composite of Au nanoparticles and porphyrin-based metal-organic framework. ACS Appl. Mater. Interfaces 2020, 12, 55324–55330.

[75]

Wu, Y.; Chen, J. Y.; He, W. M. Surface-enhanced Raman spectroscopy biosensor based on silver nanoparticles@metal-organic frameworks with peroxidase-mimicking activities for ultrasensitive monitoring of blood cholesterol. Sens. Actuators B:Chem. 2022, 365, 131939.

[76]

Shi, J. L.; Li, J. J.; Liang, A. H.; Jiang, Z. L. Highly catalysis MOFCe supported Ag nanoclusters coupled with specific aptamer for SERS quantitative assay of trace dopamine. Talanta 2022, 245, 123468.

[77]

Zavaleta, C. L.; Garai, E.; Liu, J. T. C.; Sensarn, S.; Mandella, M. J.; Van De Sompel, D.; Friedland, S.; Van Dam, J.; Contag, C. H.; Gambhir, S. S. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl. Acad. Sci. USA 2013, 110, E2288–E2297.

[78]

Harmsen, S.; Huang, R. M.; Wall, M. A.; Karabeber, H.; Samii, J. M.; Spaliviero, M.; White, J. R.; Monette, S.; O’Connor, R.; Pitter, K. L. et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl. Med. 2015, 7, 271ra7.

[79]

Song, Z. Y.; Wu, Y.; Cao, Q.; Wang, H. J.; Wang, X. R.; Han, H. Y. pH-responsive, light-triggered on-demand antibiotic release from functional metal-organic framework for bacterial infection combination therapy. Adv. Funct. Mater. 2018, 28, 1800011.

[80]

He, J. C.; Dong, J. W.; Hu, Y. F.; Li, G. K.; Hu, Y. L. Design of Raman tag-bridged core–shell Au@Cu3(BTC)2 nanoparticles for Raman imaging and synergistic chemo-photothermal therapy. Nanoscale 2019, 11, 6089–6100.

[81]

Jiang, P. C.; Hu, Y. L.; Li, G. K. Biocompatible Au@Ag nanorod@ZIF-8 core–shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery. Talanta 2019, 200, 212–217.

[82]

Carrillo-Carrión, C.; Martínez, R.; Poupard, M. F. N.; Pelaz, B.; Polo, E.; Arenas-Vivo, A.; Olgiati, A.; Taboada, P.; Soliman, M. G.; Catalán, Ú. et al. Aqueous stable gold nanostar/ZIF-8 nanocomposites for light-triggered release of active cargo inside living cells. Angew. Chem., Int. Ed. 2019, 58, 7078–7082.

Nano Research
Pages 2968-2979
Cite this article:
Zhang Y, Xue C, Xu Y, et al. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection. Nano Research, 2023, 16(2): 2968-2979. https://doi.org/10.1007/s12274-022-4914-1
Topics:

999

Views

24

Crossref

26

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 11 June 2022
Revised: 26 July 2022
Accepted: 16 August 2022
Published: 03 September 2022
© Tsinghua University Press 2022
Return