AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrathin Zn-free anode based on Ti3C2Tx and nanocellulose enabling high-durability aqueous hybrid Zn-Na battery with Zn2+/Na+ co-intercalation mechanism

Hao Chen1Weijun Zhou1Minfeng Chen1Qinghua Tian2Xiang Han1,3Jizhang Chen1,3( )
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
Show Author Information

Graphical Abstract

Layer-by-layer deposited β-In2Se3 from 1 to 13 L on monolayer MoS2 forms vertical β-In2Se3/MoS2 heterostructures. Attributed to abundant layer-dependent edge active sites, edge reconstruction, improved hydrophilicity and high electrical conductivity of β-In2Se3/MoS2 heterostructures, excellent electrocatalytic hydrogen evolution performance with lower onset potential (77.3 mV) and smaller Tafel slope (47.1 mV·dec–1) can be observed at the edge of monolayer MoS2 coupled with 13-L β-In2Se3.

Abstract

With low cost and high safety, aqueous zinc-based batteries have received considerable interest. Nevertheless, the excess utilization of zinc metal in the anodes of these batteries reduces energy density and increases costs. Herein, an ultrathin electrode of approximately 6.2 μm thick is constructed by coating Ti3C2Tx/nanocellulose hybrid onto a stainless steel foil. This electrode is used as the Zn-free anode for aqueous hybrid Zn-Na battery, in which, a concentrated electrolyte is used to improve electrochemical reversibility. The Ti3C2Tx/nanocellulose coating is found to improve the electrolyte wettability, facilitate desolvation process of hydrated Zn2+ ions, lower nucleation overpotential, improve zinc plating kinetics, guide horizontal zinc plating along the Zn(002) facet, and inhibit parasitic side reactions. It is also found that the Na3V2(PO4)3 cathode material adopts a highly reversible Zn2+/Na+ co-intercalation charge storage mechanism in this system. Thanks to these benefits, the assembled hybrid Zn-Na battery exhibits excellent rate capability, superior cyclability, and good anti-freezing ability. This work provides a new concept of electrode design for electrochemical energy storage.

Electronic Supplementary Material

Download File(s)
12274_2022_4916_MOESM1_ESM.pdf (495.8 KB)

References

[1]

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

[2]

Ma, L.; Schroeder, M. A.; Borodin, O.; Pollard, T. P.; Ding, M. S.; Wang, C. S.; Xu, K. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 2020, 5, 743–749.

[3]

Zhou, M.; Guo, S.; Li, J. L.; Luo, X. B.; Liu, Z. X.; Zhang, T. S.; Cao, X. X.; Long, M. Q.; Lu, B. G.; Pan, A. Q. et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 2021, 33, 2100187.

[4]

Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019, 20, 410–437.

[5]

Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219.

[6]

Liu, H. Y.; Wang, J. G.; You, Z. Y.; Wei, C. G.; Kang, F. Y.; Wei, B. Q. Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Mater. Today 2021, 42, 73–98.

[7]

Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

[8]

Shi, Y. C.; Chen, Y.; Shi, L.; Wang, K.; Wang, B.; Li, L.; Ma, Y. M.; Li, Y. H.; Sun, Z. H.; Ali, W. et al. An overview and future perspectives of rechargeable zinc batteries. Small 2020, 16, 2000730.

[9]

Wu, C.; Tan, H.; Huang, W.; Liu, C.; Wei, W.; Chen, L.; Yan, Q. The strategies to improve the layered-structure cathodes for aqueous multivalent metal-ion batteries. Mater. Today Energy 2021, 19, 100595.

[10]

Liu, Z. X.; Yang, Q.; Wang, D. H.; Liang, G. J.; Zhu, Y. H.; Mo, F. N.; Huang, Z. D.; Li, X. L.; Ma, L. T.; Tang, T. C. et al. A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv. Energy Mater. 2019, 9, 1902473.

[11]

Huang, M.; Meng, J. S.; Huang, Z. J.; Wang, X. P.; Mai, L. Q. Ultrafast cation insertion-selected zinc hexacyanoferrate for 1.9 V K-Zn hybrid aqueous batteries. J. Mater. Chem. A 2020, 8, 6631–6637.

[12]

Soundharrajan, V.; Sambandam, B.; Kim, S.; Mathew, V.; Jo, J.; Kim, S.; Lee, J.; Islam, S.; Kim, K.; Sun, Y. K. et al. Aqueous magnesium zinc hybrid battery: An advanced high-voltage and high-energy MgMn2O4 cathode. ACS Energy Lett. 2018, 3, 1998–2004.

[13]

Liu, S.; Lei, T.; Song, Q. Q.; Zhu, J.; Zhu, C. B. High energy, long cycle, and superior low temperature performance aqueous Na-Zn hybrid batteries enabled by a low-cost and protective interphase film-forming electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 11425–11434.

[14]

Zheng, X. H.; Ahmad, T.; Chen, W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Mater. 2021, 39, 365–394.

[15]

Yang, Y.; Liu, C. Y.; Lv, Z. H.; Yang, H.; Zhang, Y. F.; Ye, M. H.; Chen, L. B.; Zhao, J. B.; Li, C. C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 2021, 33, 2007388.

[16]

Pu, X. C.; Jiang, B. Z.; Wang, X. L.; Liu, W. B.; Dong, L. B.; Kang, F. Y.; Xu, C. J. High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 2020, 12, 152.

[17]

Zhang, Y. J.; Bi, S. S.; Niu, Z. Q.; Zhou, W. Y.; Xie, S. S. Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy Mater. 2022, 2, 200012.

[18]

Liu, N.; Li, B.; He, Z. X.; Dai, L.; Wang, H. Y.; Wang, L. Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J. Energy Chem. 2021, 59, 134–159.

[19]

Chen, M. F.; Chen, J. Z.; Zhou, W. J.; Han, X.; Yao, Y. G.; Wong, C. P. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 2021, 33, 2007559.

[20]

Chen, M. F.; Zhou, W. J.; Wang, A. R.; Huang, A. X.; Chen, J. Z.; Xu, J. L.; Wong, C. P. Anti-freezing flexible aqueous Zn-MnO2 batteries working at −35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 2020, 8, 6828–6841.

[21]

Yu, Y. X.; Xu, W.; Liu, X. Q.; Lu, X. H. Challenges and strategies for constructing highly reversible zinc anodes in aqueous zinc-ion batteries: Recent progress and future perspectives. Adv. Sustainable Syst. 2020, 4, 2000082.

[22]

Cao, Z. Y.; Zhuang, P. Y.; Zhang, X.; Ye, M. X.; Shen, J. F.; Ajayan, P. M. Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 2020, 10, 2001599.

[23]

Han, C.; Li, W. J.; Liu, H. K.; Dou, S. X.; Wang, J. Z. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 2020, 74, 104880.

[24]

Dong, L. B.; Yang, W.; Yang, W.; Tian, H.; Huang, Y. F.; Wang, X. L.; Xu, C. J.; Wang, C. Y.; Kang, F. Y.; Wang, G. X. Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 2020, 384, 123355.

[25]

Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510.

[26]

Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.

[27]

Chen, P.; Yuan, X. H.; Xia, Y. B.; Zhang, Y.; Fu, L. J.; Liu, L. L.; Yu, N. F.; Huang, Q. H.; Wang, B.; Hu, X. W. et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 2021, 8, 2100309.

[28]

Han, D. L.; Cui, C. J.; Zhang, K. Y.; Wang, Z. X.; Gao, J. C.; Guo, Y.; Zhang, Z. C.; Wu, S. C.; Yin, L. C.; Weng, Z. et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustainability 2022, 5, 205–213.

[29]

Du, H. H.; Wang, K.; Sun, T. J.; Shi, J. Q.; Zhou, X. Z.; Cai, W. S.; Tao, Z. L. Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chem. Eng. J. 2022, 427, 131705.

[30]

Liu, C. X.; Xie, X. S.; Lu, B. G.; Zhou, J.; Liang, S. Q. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 2021, 6, 1015–1033.

[31]

Shang, Y.; Kumar, P.; Musso, T.; Mittal, U.; Du, Q. J.; Liang, X.; Kundu, D. Long-life Zn anode enabled by low volume concentration of a benign electrolyte additive. Adv. Funct. Mater. 2022, 32, 2200606.

[32]

Zeng, X. H.; Mao, J. F.; Hao, J. N.; Liu, J. T.; Liu, S. L.; Wang, Z. J.; Wang, Y. Y.; Zhang, S. L.; Zheng, T.; Liu, J. W. et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 2021, 33, 2007416.

[33]

Guo, X. X.; Zhang, Z. Y.; Li, J. W.; Luo, N. J.; Chai, G. L.; Miller, T. S.; Lai, F. L.; Shearing, P.; Brett, D. J. L.; Han, D. L. et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 2021, 6, 395–403.

[34]

Sun, P.; Ma, L.; Zhou, W. H.; Qiu, M. J.; Wang, Z. L.; Chao, D. L.; Mai, W. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem., Int. Ed. 2021, 60, 18247–18255.

[35]

Ni, Q.; Jiang, H.; Sandstrom, S.; Bai, Y.; Ren, H. X.; Wu, X. Y.; Guo, Q. B.; Yu, D. X.; Wu, C.; Ji, X. L. A Na3V2(PO4)2O1.6F1. 4 cathode of Zn-ion battery enabled by a water-in-bisalt electrolyte. Adv. Funct. Mater. 2020, 30, 2003511.

[36]

Cai, S. Y.; Chu, X. Y.; Liu, C.; Lai, H. W.; Chen, H.; Jiang, Y. Q.; Guo, F.; Xu, Z. K.; Wang, C. S.; Gao, C. Water-salt oligomers enable supersoluble electrolytes for high-performance aqueous batteries. Adv. Mater. 2021, 33, 2007470.

[37]

Zhou, W. J.; Chen, M. F.; Tian, Q. H.; Chen, J. Z.; Xu, X. W.; Wong, C. P. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 2022, 44, 57–65.

[38]

Zhu, Y. P.; Yin, J.; Zheng, X. L.; Emwas, A. H.; Lei, Y. J.; Mohammed, O. F.; Cui, Y.; Alshareef, H. N. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 2021, 14, 4463–4473.

[39]

An, Y. L.; Tian, Y.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 2021, 15, 15259–15273.

[40]

Li, Q.; Wang, Y. B.; Mo, F. N.; Wang, D. H.; Liang, G. J.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Zhi, C. Y. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 2021, 11, 2003931.

[41]

Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Recent advances and perspectives of Zn-metal free “rocking-chair”-type zn-ion batteries. Adv. Energy Mater. 2021, 11, 2002529.

[42]

Chen, J. Z.; Chen, H.; Chen, M. F.; Zhou, W. J.; Tian, Q. H.; Wong, C. P. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors. Chem. Eng. J. 2022, 428, 131380.

[43]

Chen, J. Z.; Fang, K. L.; Chen, Q. Y.; Xu, J. L.; Wong, C. P. Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy 2018, 53, 337–344.

[44]

Xie, L. H.; Tang, J. D.; Qin, R. N.; Liu, J. B.; Zhang, Q. Q.; Jin, Y. H.; Wang, H. Two-dimensional nanofluidics for blue energy harvesting. Energy Mater. 2022, 2, 200008.

[45]

Tardy, B. L.; Richardson, J. J.; Greca, L. G.; Guo, J. L.; Ejima, H.; Rojas, O. J. Exploiting supramolecular interactions from polymeric colloids for strong anisotropic adhesion between solid surfaces. Adv. Mater. 2020, 32, 1906886.

[46]

Chen, H.; Chen, M. F.; Zhou, W. J.; Han, X.; Liu, B.; Zhang, W. Q.; Chen, J. Z. Flexible Ti3C2Tx/nanocellulose hybrid film as a stable Zn-free anode for aqueous hybrid Zn-Li batteries. ACS Appl. Mater. Interfaces 2022, 14, 6876–6884.

[47]

Tian, Y.; An, Y. L.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 2021, 41, 343–353.

[48]

Zhang, X. X.; Ma, J.; Hu, P.; Chen, B. B.; Lu, C. L.; Zhou, X. H.; Han, P. X.; Chen, L. H.; Cui, G. L. An insight into failure mechanism of NASICON-structured Na3V2(PO4)3 in hybrid aqueous rechargeable battery. J. Energy Chem. 2019, 32, 1–7.

[49]

Hu, P.; Zou, Z. Y.; Sun, X. W.; Wang, D.; Ma, J.; Kong, Q. Y.; Xiao, D. D.; Gu, L.; Zhou, X. H.; Zhao, J. W. et al. Uncovering the potential of M1-site-activated NASICON cathodes for Zn-ion batteries. Adv. Mater. 2020, 32, 1907526.

[50]

Ko, J. S.; Paul, P. P.; Wan, G.; Seitzman, N.; DeBlock, R. H.; Dunn, B. S.; Toney, M. F.; Nelson Weker, J. NASICON Na3V2(PO4)3 enables quasi-two-stage Na+ and Zn2+ intercalation for multivalent zinc batteries. Chem. Mater. 2020, 32, 3028–3035.

[51]

Li, G. L.; Yang, Z.; Jiang, Y.; Zhang, W. X.; Huang, Y. H. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources 2016, 308, 52–57.

[52]

Song, W. X.; Ji, X. B.; Zhu, Y. R.; Zhu, H. J.; Li, F. Q.; Chen, J.; Lu, F.; Yao, Y. P.; Banks, C. E. Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode. ChemElectroChem 2014, 1, 871–876.

[53]

Hu, P.; Zhu, T.; Wang, X. P.; Zhou, X. F.; Wei, X. J.; Yao, X. H.; Luo, W.; Shi, C. W.; Owusu, K. A.; Zhou, L. et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy 2019, 58, 492–498.

[54]

Islam, S.; Alfaruqi, M. H.; Putro, D. Y.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Sun, Y. K.; Kim, K.; Kim, J. Pyrosynthesis of Na3V2(PO4)3@C cathodes for safe and low-cost aqueous hybrid batteries. ChemSusChem 2018, 11, 2239–2247.

[55]

Li, Q.; Ma, K. X.; Hong, C.; Yang, G. Z.; Wang, C. X. Realizing excellent cycle stability of Zn/Na3V2(PO4)3 batteries by suppressing dissolution and structural degradation in non-aqueous Na/Zn dual-salt electrolytes. Sci. China Mater. 2021, 64, 1386–1395.

[56]

Chen, Y. J.; Xu, Y. L.; Sun, X. F.; Zhang, B. F.; He, S. N.; Wang, C. F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: A promising cathode with high ionic conductivity for sodium ion batteries. J. Power Sources 2018, 397, 307–317.

[57]

Yuan, D.; Zhao, J.; Ren, H.; Chen, Y. Q.; Chua, R.; Jie, E. T. J.; Cai, Y.; Edison, E.; Manalastas, W. Jr.; Wong, M. W. et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 7213–7219.

[58]

Zhou, J. H.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y. T.; Huang, R. L.; Wei, G. L.; Liu, A. N.; Li, L.; Chen, R. J. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2101649.

[59]

Li, X. L.; Li, Q.; Hou, Y.; Yang, Q.; Chen, Z.; Huang, Z. D.; Liang, G. J.; Zhao, Y. W.; Ma, L. T.; Li, M. et al. Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano 2021, 15, 14631–14642.

[60]

Liu, H. Y.; Wang, J. G.; Hua, W.; Sun, H. H.; Huyan, Y.; Tian, S.; Hou, Z. D.; Yang, J. C.; Wei, C. G.; Kang, F. Y. Building ohmic contact interfaces toward ultrastable Zn metal anodes. Adv. Sci. 2021, 8, 2102612.

Nano Research
Pages 536-544
Cite this article:
Chen H, Zhou W, Chen M, et al. Ultrathin Zn-free anode based on Ti3C2Tx and nanocellulose enabling high-durability aqueous hybrid Zn-Na battery with Zn2+/Na+ co-intercalation mechanism. Nano Research, 2023, 16(1): 536-544. https://doi.org/10.1007/s12274-022-4916-z
Topics:

939

Views

13

Crossref

7

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 21 June 2022
Revised: 28 July 2022
Accepted: 15 August 2022
Published: 03 September 2022
© Tsinghua University Press 2022
Return