AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications

Dongzhi Zhang1( )Mengyu Wang1Mingcong Tang1Xiaoshuang Song1Xixi Zhang1Zhanjia Kang1Xiaohua Liu1Jianhua Zhang1Qingzhong Xue2( )
State Key Laboratory of Heavy Oil Processing, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

Diversiform humidity sensors based on versatile nanomaterials demonstrated great prospective applications in various fields.

Abstract

Humidity sensors are of significance in various fields, such as environmental and food quality monitoring, industrial processing, wearable and flexible electronics, and human health care. High-performance humidity sensors with high sensitivity, rapid response time, and good stability are of paramount importance in humidity sensing. In this paper, diversiform humidity sensors with different sensing mechanisms are summarized, including resistive, impedance, capacitive, quartz crystal microbalance (QCM), surface acoustic wave (SAW), field-effect transistor (FET), and optical fiber humidity sensors. Versatile nanomaterials such as graphene, transition-metal chalcogenide, MXenes, black phosphorus (BP), boron nitride (BN), polymers, and nanofibers were promising building-blocks for constructing humidity sensors. The latest progress in the wearable and flexible humidity sensors, and self-powered humidity sensors was summarized. The diversiform applications of the humidity sensors with great prospects were demonstrated in various fields in terms of human respiratory monitoring, skin dryness diagnosing, fingertip approaching, and non-contact switch. Moreover, the challenges and prospects of nanomaterials-based humidity sensors were discussed.

References

[1]

Peng, Y.; Zhao, Y.; Chen, M. Q.; Xia, F. Research advances in microfiber humidity sensors. Small 2018, 14, 1800524.

[2]

Ali, S.; Hassan, A.; Hassan, G.; Bae, J.; Lee, C. H. All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity. Carbon 2016, 105, 23–32.

[3]

Liu, Y. J.; Guo, Y. J.; Zhang, X. Q.; Gao, G. Q.; Shi, C. Q.; Huang, G. Z.; Li, P. L.; Kang, Q.; Huang, X. Y.; Wu, G. N. Self-cleaning of superhydrophobic nanostructured surfaces at low humidity enhanced by vertical electric field. Nano Res. 2022, 15, 4732–4738.

[4]

Chen, C. Z.; Wang, X. L.; Li, M. F.; Fan, Y. M.; Sun, R. C. Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film. Sens. Actuators B Chem. 2018, 255, 1569–1576.

[5]

Duan, Z. H.; Jiang, Y. D.; Tai, H. L. Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 2021, 9, 14963–14980.

[6]

Najeeb, M. A.; Ahmad, Z.; Shakoor, R. A. Organic thin-film capacitive and resistive humidity sensors: A focus review. Adv. Mater. Interfaces 2018, 5, 1800969.

[7]

Zhao, Q. N.; Zhang, Y. J.; Duan, Z. H.; Wang, S.; Liu, C.; Jiang, Y. D.; Tai, H. L. A review on Ti3C2Tx-based nanomaterials: Synthesis and applications in gas and humidity sensors. Rare Met. 2021, 40, 1459–1476.

[8]

Jeong, W.; Song, J.; Bae, J.; Nandanapalli, K. R.; Lee, S. Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 2019, 11, 44758–44763.

[9]

Ni, X.; Luo, J.; Liu, R.; Liu, X. Y. A novel flexible UV-cured carbon nanotube composite film for humidity sensing. Sens. Actuators B Chem. 2019, 297, 126785.

[10]

Zhang, D. Z.; Zong, X. Q.; Wu, Z. L. Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility. Sens. Actuators B Chem. 2019, 287, 398–407.

[11]

Romero, F. J.; Rivadeneyra, A.; Salinas-Castillo, A.; Ohata, A.; Morales, D. P.; Becherer, M.; Rodriguez, N. Design, fabrication and characterization of capacitive humidity sensors based on emerging flexible technologies. Sens. Actuators B Chem. 2019, 287, 459–467.

[12]

Zhang, D. Z.; Chang, H. Y.; Li, P.; Liu, R. H.; Xue, Q. Z. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B Chem. 2016, 225, 233–240.

[13]

Tai, H. L.; Zhen, Y.; Liu, C. H.; Ye, Z. B.; Xie, G. Z.; Du, X. S.; Jiang, Y. D. Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film. Sens. Actuators B Chem. 2016, 230, 501–509.

[14]

Tang, Y. L.; Li, Z. J.; Ma, J. Y.; Wang, L.; Yang, J.; Du, B.; Yu, Q. K.; Zu, X. T. Highly sensitive surface acoustic wave (SAW) humidity sensors based on sol–gel SiO2 films: Investigations on the sensing property and mechanism. Sens. Actuators B Chem. 2015, 215, 283–291.

[15]

Shin, J.; Hong, Y.; Wu, M. L.; Bae, J. H.; Kwon, H. I.; Park, B. G.; Lee, J. H. An accurate and stable humidity sensing characteristic of Si FET-type humidity sensor with MoS2 as a sensing layer by pulse measurement. Sens. Actuators B Chem. 2018, 258, 574–579.

[16]

Lopez-Torres, D.; Elosua, C.; Villatoro, J.; Zubia, J.; Rothhardt, M.; Schuster, K.; Arregui, F. J. Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor. Sens. Actuators B Chem. 2017, 242, 1065–1072.

[17]

Lv, C.; Hu, C.; Luo, J. H.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J. F.; Shi, Y.; Cai, J. G.; Watanabe, A. Recent advances in graphene-based humidity sensors. Nanomaterials 2019, 9, 422.

[18]

Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

[19]

Duan, Z. H.; Jiang, Y. D.; Zhao, Q. N.; Wang, S.; Yuan, Z.; Zhang, Y. J.; Liu, B. H.; Tai, H. L. Facile and low-cost fabrication of a humidity sensor using naturally available sepiolite nanofibers. Nanotechnology 2020, 31, 355501.

[20]

Zhang, Y. J.; Wu, Y. W.; Duan, Z. H.; Liu, B. H.; Zhao, Q. N.; Yuan, Z.; Li, S. R.; Liang, J. G.; Jiang, Y. D.; Tai, H. L. High performance humidity sensor based on 3D mesoporous Co3O4 hollow polyhedron for multifunctional applications. Appl. Surf. Sci. 2022, 585, 152698.

[21]

Duan, Z. H.; Zhao, Q. N.; Li, C. Z.; Wang, S.; Jiang, Y. D.; Zhang, Y. J.; Liu, B. H.; Tai, H. L. Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Met. 2021, 40, 1762–1767.

[22]

Duan, Z. H.; Jiang, Y. D.; Zhao, Q. N.; Huang, Q.; Wang, S.; Zhang, Y. J.; Wu, Y. W.; Liu, B. H.; Zhen, Y.; Tai, H. L. Daily writing carbon ink: Novel application on humidity sensor with wide detection range, low detection limit and high detection resolution. Sens. Actuators B Chem. 2021, 339, 129884.

[23]

Zhao, Q. N.; Yuan, Z.; Duan, Z. H.; Jiang, Y. D.; Li, X.; Li, Z. M.; Tai, H. L. An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sens. Actuators B Chem. 2019, 289, 182–185.

[24]

Duan, Z. H.; Zhao, Q. N.; Wang, S.; Huang, Q.; Yuan, Z.; Zhang, Y. J.; Jiang, Y. D.; Tai, H. L. Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens. Actuators B Chem. 2020, 317, 128204.

[25]

Duan, Z. H.; Zhao, Q. N.; Wang, S.; Yuan, Z.; Zhang, Y. J.; Li, X.; Wu, Y. W.; Jiang, Y. D.; Tai, H. L. Novel application of attapulgite on high performance and low-cost humidity sensors. Sens. Actuators B Chem. 2020, 305, 127534.

[26]

Zhao, Q. N.; Jiang, Y. D.; Duan, Z. H.; Yuan, Z.; Zha, J.; Wu, Z. K.; Huang, Q.; Zhou, Z.; Li, H.; He, F. et al. A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem. Eng. J. 2022, 438, 135588.

[27]

Duan, Z. H.; Yuan, Z.; Jiang, Y. D.; Zhao, Q. N.; Huang, Q.; Zhang, Y. J.; Liu, B. H.; Tai, H. L. Power generation humidity sensor based on primary battery structure. Chem. Eng. J. 2022, 446, 136910.

[28]

Liu, B. H.; Xie, G. Z.; Li, C. Z.; Wang, S.; Yuan, Z.; Duan, Z. H.; Jiang, Y. D.; Tai, H. L. A chitosan/amido-graphene oxide-based self-powered humidity sensor enabled by triboelectric effect. Rare Met. 2021, 40, 1995–2003.

[29]

Zhang, D. Z.; Tong, J.; Xia, B. K.; Xue, Q. Z. Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B Chem. 2014, 203, 263–270.

[30]

Hou, C.; Tai, G.; Liu, B.; Wu, Z. H.; Yin, Y. H. Borophene–graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 2021, 14, 2337–2344.

[31]

Xiao, J. Z.; Fu, Z. H.; Wang, G. N.; Ye, X. L.; Xu, G. Atomically thin 2D TiO2 nanosheets with ligand modified surface for ultra-sensitive humidity sensor. Chin. J. Struc. Chem. 2022, 41, 41366–41372.

[32]

Zhang, D. Z.; Sun, Y.; Li, P.; Zhang, Y. Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl. Mater. Interfaces 2016, 8, 14142–14149.

[33]

Zhang, Q.; Zhang, J. Q.; Wan, S. Y.; Wang, W. Y.; Fu, L. Stimuli-responsive 2D materials beyond grapheme. Adv. Funct. Mater. 2018, 28, 1802500.

[34]

Cho, S. Y.; Lee, Y.; Koh, H. J.; Jung, H.; Kim, J. S.; Yoo, H. W.; Kim, J.; Jung, H. T. Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv. Mater. 2016, 28, 7020–7028.

[35]

Yu, Y. L.; Chen, H.; Liu, Y.; Li, L. H.; Chen, Y. Humidity sensing properties of single Au-decorated boron nitride nanotubes. Electrochem. Commun. 2013, 30, 29–33.

[36]

Zhang, D. Z.; Wang, D. Y.; Zong, X. Q.; Dong, G. K.; Zhang, Y. High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method. Sens. Actuators B Chem. 2018, 262, 531–541.

[37]

Qi, R. R.; Lin, X. Z.; Dai, J. X.; Zhao, H. R.; Liu, S.; Fei, T.; Zhang, T. Humidity sensors based on MCM-41/polypyrrole hybrid film via in situ polymerization. Sens. Actuators B Chem. 2018, 277, 584–590.

[38]

Lin, Y.; Jiang, H. J.; Liang, G. L.; Deng, W. H.; Li, Q. H.; Li, W. H.; Xu, G. The exceptionally high moisture responsiveness of a new conductive-coordination-polymer based chemiresistive sensor. CrystEngComm 2021, 23, 3549–3556.

[39]

Kang, T. G.; Park, J. K.; Yun, G. H.; Choi, H. H.; Lee, H. J.; Yook, J. G. A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT: PSS film. Sens. Actuators B Chem. 2019, 282, 145–151.

[40]

Kang, K. S.; Jeong, S. Y.; Jeong, E. G.; Choi, K. C. Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs. Nano Res. 2020, 13, 2716–2725.

[41]

Huang, X. W.; Li, B.; Wang, L.; Lai, X. J.; Xue, H. G.; Gao, J. F. Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces 2019, 11, 24533–24543.

[42]

Trung, T. Q.; Duy, L. T.; Ramasundaram, S.; Lee, N. E. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res. 2017, 10, 2021–2033.

[43]

Wang, Y.; Chen, T. Y.; Sun, S. W.; Liu, X. Y.; Hu, Z. Y.; Lian, Z. H.; Liu, L.; Shi, Q. F.; Wang, H.; Mi, J. C. et al. A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy. Nano Res. 2022, 15, 3246–3253.

[44]

Zhen, Z.; Li, Z. C.; Zhao, X. L.; Zhong, Y. J.; Zhang, L.; Chen, Q.; Yang, T. T.; Zhu, H. W. Formation of uniform water microdroplets on wrinkled graphene for ultrafast humidity sensing. Small 2018, 14, 1703848.

[45]

Dai, J. X.; Zhao, H. R.; Lin, X. Z.; Liu, S.; Liu, Y. S.; Liu, X. P.; Fei, T.; Zhang, T. Ultrafast response polyelectrolyte humidity sensor for respiration monitoring. ACS Appl. Mater. Interfaces 2019, 11, 6483–6490.

[46]

Li, N.; Jiang, Y.; Zhou, C. H.; Xiao, Y.; Meng, B.; Wang, Z. Y.; Huang, D. Z.; Xing, C. Y.; Peng, Z. C. High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl. Mater. Interfaces 2019, 11, 38116–38125.

[47]

Zhang, D. Z.; Wang, D. Y.; Li, P.; Zhou, X. Y.; Zong, X. Q.; Dong, G. K. Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuators B Chem. 2018, 255, 1869–1877.

[48]

Ding, X.; Chen, X. D.; Chen, X. P.; Zhao, X.; Li, N. A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor. Sens. Actuators B Chem. 2018, 266, 534–542.

[49]

Lin, J. B.; Gao, N. B.; Liu, J. M.; Hu, Z. X.; Fang, H.; Tan, X. H.; Li, H. Y.; Jiang, H.; Liu, H.; Shi, T. L. et al. Superhydrophilic Cu(OH)2 nanowire-based QCM transducer with self-healing ability for humidity detection. J. Mater. Chem. A 2019, 7, 9068–9077.

[50]

Zheng, X. Y.; Fan, R. R.; Li, C. R.; Yang, X. Y.; Li, H. Z.; Lin, J. D.; Zhou, X. C.; Lv, R. X. A fast-response and highly linear humidity sensor based on quartz crystal microbalance. Sens. Actuators B Chem. 2019, 283, 659–665.

[51]

Su, Y. P.; Li, C. P.; Li, M. J.; Li, H. J.; Xu, S.; Qian, L. R.; Yang, B. H. Surface acoustic wave humidity sensor based on three-dimensional architecture graphene/PVA/SiO2 and its application for respiration monitoring. Sens. Actuators B Chem. 2020, 308, 127693.

[52]

Liu, Y.; Huang, H.; Wang, L. L.; Cai, D. P.; Liu, B.; Wang, D. D.; Li, Q. H.; Wang, T. H. Electrospun CeO2 nanoparticles/PVP nanofibers based high-frequency surface acoustic wave humidity sensor. Sens. Actuators B Chem. 2016, 223, 730–737.

[53]

Liu, H. L.; Liu, Y. M.; Chu, Y.; Hayasaka, T.; Joshi, N.; Cui, Y.; Wang, X. H.; You, Z.; Lin, L. W. AC phase sensing of graphene FETs for chemical vapors with fast recovery and minimal baseline drift. Sens. Actuators B Chem. 2018, 263, 94–102.

[54]

Khatib, M.; Huynh, T. P.; Deng, Y. F.; Horev, Y. D.; Saliba, W.; Wu, W. W.; Haick, H. A freestanding stretchable and multifunctional transistor with intrinsic self-healing properties of all device components. Small 2019, 15, 1803939.

[55]

Zhao, Y.; Tong, R. J.; Chen, M. Q.; Xia, F. Relative humidity sensor based on hollow core fiber filled with GQDs-PVA. Sens. Actuators B Chem. 2019, 284, 96–102.

[56]

Aldaba, A. L.; Lopez-Torres, D.; Elosua, C.; Auguste, J. L.; Jamier, R.; Roy, P.; Arregui, F. J.; Lopez-Amo, M. SnO2-MOF-fabry-perot optical sensor for relative humidity measurements. Sens. Actuators B Chem. 2018, 257, 189–199.

[57]

Park, S. Y.; Kim, Y. H.; Lee, S. Y.; Sohn, W.; Lee, J. E.; Kim, D. H.; Shim, Y. S.; Kwon, K. C.; Choi, K. S.; Yoo, H. J. et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 2018, 6, 5016–5024.

[58]

Wu, J.; Sun, Y. M.; Wu, Z. X.; Li, X.; Wang, N.; Tao, K.; Wang, G. P. Carbon nanocoil-based fast-response and flexible humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces 2019, 11, 4242–4251.

[59]

Park, S.; Lee, D.; Kwak, B.; Lee, H. S.; Lee, S.; Yoo, B. Synthesis of self-bridged ZnO nanowires and their humidity sensing properties. Sens. Actuators B Chem. 2018, 268, 293–298.

[60]

Kim, H. S.; Kim, J. H.; Park, S. Y.; Kang, J. H.; Kim, S. J.; Choi, Y. B.; Shin, U. S. Carbon nanotubes immobilized on gold electrode as an electrochemical humidity sensor. Sens. Actuators B Chem. 2019, 300, 127049.

[61]

Sun, L.; Wang, B.; Wang, Y. D. A novel silicon carbide nanosheet for high-performance humidity sensor. Adv. Mater. Interfaces 2018, 5, 1701300.

[62]

Zhou, X. W.; Guo, W.; Fu, J.; Zhu, Y.; Huang, Y. D.; Peng, P. Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing. Appl. Surf. Sci. 2019, 494, 684–690.

[63]

Hu, Q. C.; Cheng, X. L.; Zhang, X. F.; Xu, Y. M.; Gao, S.; Zhao, H.; Major, Z.; Huo, L. H. One-step solvothermal synthesis of 3D tube-globular Dy2O3 nanostructure for ultra-fast response to humidity. Sens. Actuators B Chem. 2020, 305, 127434.

[64]

Guo, Y. N.; Li, L.; Zhao, C.; Song, L. Y.; Wang, B. H. Humidity sensing properties of poly-vanadium-titanium acid combined with polyaniline grown in situ by electrochemical polymerization. Sens. Actuators B Chem. 2018, 270, 80–88.

[65]

Zhou, J.; Xiao, X.; Cheng, X. F.; Gao, B. J.; He, J. H.; Xu, Q. F.; Li, H.; Li, N. J.; Chen, D. Y.; Lu, J. M. Surface modification of polysquaraines to sense humidity within a second for breath monitoring. Sens. Actuators B Chem. 2018, 271, 137–146.

[66]

Yu, S. G.; Zhang, H. Y.; Chen, C. C.; Lin, C. Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle, Sens. Actuators B Chem. 2019, 287, 526–534.

[67]

Si, R. J.; Xie, X. J.; Li, T. Y.; Zheng, J.; Cheng, C.; Wang, C. C. TiO2/NaNbO3 heterojunction for boosted humidity sensing ability. Sens. Actuators B Chem. 2020, 309, 127803.

[68]

Zhen, Y. H.; Zhang, J. Y.; Wang, W. X.; Li, Y. D.; Gao, X. X.; Xue, H. Y.; Liu, X.; Jia, Z. L.; Xue, Q. Z.; Zhang, J. et al. Embedded SnO2/diatomaceous earth composites for fast humidity sensing and controlling properties. Sens. Actuators B Chem. 2020, 303, 127137.

[69]

Zhao, H. R.; Zhang, T.; Qi, R. R.; Dai, J. X.; Liu, S.; Fei, T.; Lu, G. Y. Development of solution processible organic–inorganic hybrid materials with core–shell framework for humidity monitoring. Sens. Actuators B Chem. 2018, 255, 2878–2885.

[70]

Liang, J. G.; Wang, C.; Yao, Z.; Liu, M. Q.; Kim, H. K.; Oh, J. M.; Kim, N. Y. Preparation of ultrasensitive humidity-sensing films by aerosol deposition. ACS Appl. Mater. Interfaces 2018, 10, 851–863.

[71]

Zhang, D. Z.; Wang, M. Y.; Yang, Z. M. Facile fabrication of graphene oxide/nafion/indium oxide for humidity sensing with highly sensitive capacitance response. Sens. Actuators B Chem. 2019, 292, 187–195.

[72]

Zhao, Y. L.; Yang, B.; Liu, J. Q. Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor. Sens. Actuators B Chem. 2018, 271, 256–263.

[73]

Li, T. Y.; Si, R. J.; Sun, J.; Wang, S. T.; Wang, J.; Ahmed, R.; Zhu, G. B.; Wang, C. C. Giant and controllable humidity sensitivity achieved in (Na plus Nb) co-doped rutile TiO2. Sens. Actuators B Chem. 2019, 293, 151–158.

[74]

Li, X. Y.; Chen, X. D.; Chen, X. P.; Ding, X.; Zhao, X. High-sensitive humidity sensor based on graphene oxide with evenly dispersed multiwalled carbon nanotubes. Mater. Chem. Phys. 2018, 207, 135–140.

[75]

Yu, X. L.; Chen, X. D.; Ding, X.; Chen, X. P.; Yu, X.; Zhao, X. High-sensitivity and low-hysteresis humidity sensor based on hydrothermally reduced graphene oxide/nanodiamond. Sens. Actuators B Chem. 2019, 283, 761–768.

[76]

Zhang, D. Z.; Chen, H. N.; Zhou, X. Y.; Wang, D. Y.; Jin, Y. B.; Yu, S. J. In-situ polymerization of metal organic frameworks-derived ZnCo2O4/polypyrrole nanofilm on QCM electrodes for ultra-highly sensitive humidity sensing application. Sens. Actuators A Phys. 2019, 295, 687–695.

[77]

Gao, N. B.; Li, H. Y.; Zhang, W. H.; Zhang, Y. Z.; Zeng, Y.; Hu, Z. X.; Liu, J. Y.; Jiang, J. J.; Miao, L.; Yi, F. et al. QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires. Sens. Actuators B Chem. 2019, 293, 129–135.

[78]

Wang, S.; Xie, G. Z.; Su, Y. J.; Su, L.; Zhang, Q. P.; Du, H. F.; Tai, H. L.; Jiang, Y. D. Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance. Sens. Actuators B Chem. 2018, 255, 2203–2210.

[79]

Yuan, Z.; Tai, H. L.; Ye, Z. B.; Liu, C. H.; Xie, G. Z.; Du, X. S.; Jiang, Y. D. Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film. Sens. Actuators B Chem. 2016, 234, 145–154.

[80]

Le, X. H.; Wang, X. Y.; Pang, J. T.; Liu, Y. J.; Fang, B.; Xu, Z.; Gao, C.; Xu, Y.; Xie, J. A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure. Sens. Actuators B Chem. 2018, 255, 2454–2461.

[81]

Le, X. H.; Liu, Y. H.; Peng, L.; Pang, J. T.; Xu, Z.; Gao, C.; Xie, J. Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension. Microsyst. Nanoeng. 2019, 5, 36.

[82]

Chu, R.; Guan, C. Y.; Bo, Y. T.; Shi, J. H.; Zhu, Z.; Li, P.; Yang, J.; Yuan, L. B. All-optical graphene-oxide humidity sensor based on a side-polished symmetrical twin-core fiber Michelson interferometer. Sens. Actuators B Chem. 2019, 284, 623–627.

[83]

Chen, G. Y.; Wu, X.; Codemard, C. A.; Yu, L.; Liu, X. K.; Xu, H. L.; Monro, T. M.; Lancaster, D. G. Optical hygrometer using light-sheet skew-ray probed multimode fiber with polyelectrolyte coating. Sens. Actuators B Chem. 2019, 296, 126685.

[84]

Liu, Y.; Deng, H. C.; Yuan, L. B. A novel polyvinyl alcohol and hypromellose gap-coated humidity sensor based on a Mach–Zehnder interferometer with off-axis spiral deformation. Sens. Actuators B Chem. 2019, 284, 323–329.

[85]

Lee, Y.; Kim, S. K.; Park, Y. J.; Cho, J.; Koo, H. J. A humidity-sensing composite microfiber based on moisture-induced swelling of an agarose polymer matrix. Polym. Compos. 2019, 40, 3582–3587.

[86]

Huang, G. Q.; Zhou, H. L.; Wang, C. P.; Kashi, C.; Ye, X. L.; Li, W. H.; Wang, G. E.; Xu, G. A new 1D inorganic–organic hybrid perovskite-like semiconductor with high stability and humidity response. Inorg. Chem. Commun. 2021, 128, 108581.

[87]

Hu, G. F.; Zhou, R. R.; Yu, R. M.; Dong, L.; Pan, C. F.; Wang, Z. L. Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Res. 2014, 7, 1083–1091.

[88]

Zhu, P. H.; Liu, Y.; Fang, Z. Q.; Kuang, Y. D.; Zhang, Y. Z.; Peng, C. X.; Chen, G. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film. Langmuir 2019, 35, 4834–4842.

[89]

Choi, S.; Lee, H. M.; Kim, H. S. High performance and moisture stable humidity sensors based on polyvinylidene fluoride nanofibers by improving electric conductivity. Polym. Eng. Sci. 2019, 59, 304–310.

[90]

Andre, R. S.; Pereira, J. C.; Mercante, L. A.; Locilento, D.; Mattoso, L. H. C.; Correa, D. S. ZnO–Co3O4 heterostructure electrospun nanofibers modified with poly(sodium 4-styrenesulfonate): Evaluation of humidity sensing properties. J. Alloys Compd. 2018, 767, 1022–1029.

[91]

Li, B. L.; Tian, Q.; Su, H. X.; Wang, X. W.; Wang, T. A. N.; Zhang, D. Z. High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection. Sens. Actuators B Chem. 2019, 299, 126973.

[92]

Li, X. Y.; Chen, X. D.; Yu, X.; Chen, X. P.; Ding, X.; Zhao, X. A high-sensitive humidity sensor based on water-soluble composite material of fullerene and graphene oxide. IEEE Sens. J. 2018, 18, 962–966.

[93]

Alrammouz, R.; Podlecki, J.; Vena, A.; Garcia, R.; Abboud, P.; Habchi, R.; Sorli, B. Highly porous and flexible capacitive humidity sensor based on self-assembled graphene oxide sheets on a paper substrate. Sens. Actuators B Chem. 2019, 298, 126829.

[94]

Guo, H. Y.; Lan, C. Y.; Zhou, Z. F.; Sun, P. H.; Wei, D. P.; Li, C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017, 9, 6246–6253.

[95]

Lin, J. B.; Fang, H.; Tan, X. H.; Sun, B.; Wang, Z. Y.; Deng, H. D.; Liu, H.; Tang, Z. R.; Liao, G. L.; Shi, T. L. Ultrafast self-assembly MoS2/Cu(OH)2 nanowires for highly sensitive gamut humidity detection with an enhanced self-recovery ability. ACS Appl. Mater. Interfaces 2019, 11, 46368–46378.

[96]

Feng, Y.; Gong, S. J.; Du, E. W.; Yu, K.; Ren, J.; Wang, Z. G.; Zhu, Z. Q. TaS2 nanosheet-based ultrafast response and flexible humidity sensor for multifunctional applications. J. Mater. Chem. C 2019, 7, 9284–9292.

[97]

Muckley, E. S.; Naguib, M.; Ivanov, I. N. Multi-modal, ultrasensitive, wide-range humidity sensing with Ti3C2 film. Nanoscale 2018, 10, 21689–21695.

[98]

Dong, W. Y.; Ma, Z. H.; Duan, Q. Preparation of stable crosslinked polyelectrolyte and the application for humidity sensing. Sens. Actuators B Chem. 2018, 272, 14–20.

[99]

Lv, R. X.; Peng, J.; Chen, S.; Hu, Y. C.; Wang, M. F.; Lin, J. D.; Zhou, X. C.; Zheng, X. Y. A highly linear humidity sensor based on quartz crystal microbalance coated with urea formaldehyde resin/nano silica composite films. Sens. Actuators B Chem. 2017, 250, 721–725.

[100]

Geng, W. C.; He, X. W.; Su, Y. W.; Dang, J.; Gu, J. W.; Tian, W.; Zhang, Q. Y. Remarkable humidity-responsive sensor based on poly (N, N-diethylaminoethyl methacrylate)-b-polystyrene block copolymers. Sens. Actuators B Chem. 2016, 226, 471–477.

[101]

Gu, L.; Zhou, D.; Cao, J. C. Piezoelectric active humidity sensors based on lead-free NaNbO3 piezoelectric nanofibers. Sensors 2016, 16, 833.

[102]

Yuan, Z.; Tai, H. L.; Bao, X. H.; Liu, C. H.; Ye, Z. B.; Jiang, Y. D. Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor. Mater. Lett. 2016, 174, 28–31.

[103]

Cai, J. G.; Lv, C.; Aoyagi, E.; Ogawa, S.; Watanabe, A. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 2018, 10, 23987–23996.

[104]

Fang, H.; Lin, J. B.; Hu, Z. X.; Liu, H.; Tang, Z. R.; Shi, T. L.; Liao, G. L. Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring. Sens. Actuators B Chem. 2020, 304, 127313.

[105]

Jayakumar, A.; Surendranath, A.; Pv, M. 2D materials for next generation healthcare applications. Int. J. Pharm. 2018, 551, 309–321.

[106]

Zhang, D. Z.; Zong, X. Q.; Wu, Z. L.; Zhang, Y. Hierarchical self-assembled SnS2 nanoflower/Zn2SnO4 hollow sphere nanohybrid for humidity-sensing applications. ACS Appl. Mater. Interfaces 2018, 10, 32631–32639.

[107]

Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M. Z.; Chen, P.; Wang, S. P.; Shi, D. X.; Sun, Q. J.; Zhang, G. Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.

[108]

Yang, Z. J.; Liu, A.; Wang, C. L.; Liu, F. M.; He, J. M.; Li, S. Q.; Wang, J.; You, R.; Yan, X.; Sun, P. et al. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 2019, 4, 1261–1269.

[109]

Li, N.; Jiang, Y.; Xiao, Y.; Meng, B.; Xing, C. Y.; Zhang, H.; Peng, Z. C. A fully inkjet-printed transparent humidity sensor based on a Ti3C2/Ag hybrid for touchless sensing of finger motion. Nanoscale 2019, 11, 21522–21531.

[110]

He, P.; Brent, J. R.; Ding, H.; Yang, J.; Lewis, D. J.; O’Brien, P.; Derby, B. Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 2018, 10, 5599–5606.

[111]

Yao, Y.; Zhang, H.; Sun, J.; Ma, W. Y.; Li, L.; Li, W. Z.; Du, J. Novel QCM humidity sensors using stacked black phosphorus nanosheets as sensing film. Sens. Actuators B Chem. 2017, 244, 259–264.

[112]

Sajid, M.; Kim, H. B.; Lim, J. H.; Choi, K. H. Liquid-assisted exfoliation of 2D hBN flakes and their dispersion in PEO to fabricate highly specific and stable linear humidity sensors. J. Mater. Chem. C 2018, 6, 1421–1432.

[113]

Gautam, C.; Tiwary, C. S.; Machado, L. D.; Jose, S.; Ozden, S.; Biradar, S.; Galvao, D. S.; Sonker, R. K.; Yadav, B. C.; Vajtai, R. et al. Synthesis and porous h-BN 3D architectures for humidity and natural gas sensing applications. RSC Adv. 2016, 6, 87888–87896.

[114]

Dai, J. X.; Zhao, H. R.; Lin, X. Z.; Liu, S.; Fei, T.; Zhang, T. Humidity sensors based on 3D porous polyelectrolytes via breath figure method. Adv. Electron. Mater. 2020, 6, 1900846.

[115]

Kalsoom, U.; Waheed, S.; Paull, B. Fabrication of humidity sensor using 3D printable polymer composite containing boron-doped diamonds and LiCl. ACS Appl. Mater. Interfaces 2020, 12, 4962–4969.

[116]

Xu, Z. Y.; Zhang, D. Z.; Liu X. H.; Yang, Y.; Wang, X. W.; Xue, Q. Z. Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor. Nano Energy 2022, 94, 106881.

[117]

Xing, Z. S.; Zheng, Y.; Yan, Z. F.; Feng, Y. M.; Xiao, Y.; Yu, J. H.; Guan, H. Y.; Luo, Y. H.; Wang, Z. Q.; Zhong, Y. C. et al. High-sensitivity humidity sensing of microfiber coated with three-dimensional graphene network. Sens. Actuators B Chem. 2019, 281, 953–959.

[118]

Feng, H. L.; Li, C.; Li, T.; Diao, F. Y.; Xin, T.; Liu, B.; Wang, Y. Q. Three-dimensional hierarchical SnO2 dodecahedral nanocrystals with enhanced humidity sensing properties. Sens. Actuators B Chem. 2017, 243, 704–714.

[119]

Tai, H. L.; Wang, S.; Duan, Z. H.; Jiang, Y. D. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuators B Chem. 2020, 318, 128104.

[120]

Tang, H. Y.; Li, Y. T.; Ye, H. Y.; Hu, F. F.; Gao, C. S.; Tao, L. Q.; Tu, T.; Gou, G. Y.; Chen, X. P.; Fan, X. J. et al. High-performance humidity sensor using Schottky-contacted SnS nanoflakes for noncontact healthcare monitoring. Nanotechnology 2020, 31, 055501.

[121]

Alonso, E. T.; Shin, D. W.; Rajan, G.; Neves, A. I. S.; Russo, S.; Craciun, M. F. Water-based solution processing and wafer-scale integration of all-graphene humidity sensors. Adv. Sci. 2019, 6, 1802318.

[122]

Yang, J. H.; Shi, R. L.; Lou, Z.; Chai, R. Q.; Jiang, K.; Shen, G. Z. Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small 2019, 15, 1902801.

[123]

Duan, Z. H.; Jiang, Y. D.; Yan, M. G.; Wang, S.; Yuan, Z.; Zhao, Q. N.; Sun, P.; Xie, G. Z.; Du, X. S.; Tai, H. L. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces 2019, 11, 21840–21849.

[124]

Sahatiya, P.; Kadu, A.; Gupta, H.; Gomathi, P. T.; Badhulika, S. Flexible, disposable cellulose-paper-based MoS2/Cu2S hybrid for wireless environmental monitoring and multifunctional sensing of chemical stimuli. ACS Appl. Mater. Interfaces 2018, 10, 9048–9059.

[125]

Liu, H. B.; Xiang, H. C.; Wang, Y.; Li, Z. J.; Qian, L. W.; Li, P.; Ma, Y. C.; Zhou, H. W.; Huang, W. A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl. Mater. Interfaces 2019, 11, 40613–40619.

[126]

Luo, J. J.; Yao, Y. B.; Duan, X. S.; Liu, T. Force and humidity dual sensors fabricated by laser writing on polyimide/paper bilayer structure for pulse and respiration monitoring. J. Mater. Chem. C 2018, 6, 4727–4736.

[127]

Wang, Y.; Zhang, L. N.; Zhou, J. P.; Lu, A. Flexible and transparent cellulose-based ionic film as a humidity sensor. ACS Appl. Mater. Interfaces 2020, 12, 7631–7638.

[128]

Ma, L. Y.; Wu, R. H.; Patil, A.; Zhu, S. H.; Meng, Z. H.; Meng, H. O.; Hou, C.; Zhang, Y. F.; Liu, Q.; Yu, R. et al. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 2019, 29, 1904549.

[129]

Li, B. T.; Xiao, G.; Liu, F.; Qiao, Y.; Li, C. M.; Lu, Z. S. A flexible humidity sensor based on silk fabrics for human respiration monitoring. J. Mater. Chem. C 2018, 6, 4549–4554.

[130]

Zang, W. L.; Wang, W.; Zhu, D.; Xing, L. L.; Xue, X. Y. Humidity-dependent piezoelectric output of Al-ZnO nanowire nanogenerator and its applications as a self-powered active humidity sensor. RSC Adv. 2014, 4, 56211–56215.

[131]

Zhao, T. M.; Fu, Y. M.; Zhao, Y. Y.; Xing, L. L.; Xue, X. Y. Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response. J. Alloys Compd. 2015, 648, 571–576.

[132]

Zhu, D.; Hu, T. X.; Zhao, Y. Y.; Zang, W. L.; Xing, L. L.; Xue, X. Y. High-performance self-powered/active humidity sensing of Fe-doped ZnO nanoarray nanogenerator. Sens. Actuators B Chem. 2015, 213, 382–389.

[133]

Modaresinezhad, E.; Darbari, S. Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets. Sens. Actuators B Chem. 2016, 237, 358–366.

[134]

Wang D. Y.; Zhang, D. Z.; Li, P.; Yang, Z. M.; Mi Q.; Yu L. D. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofibers based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021, 13, 57.

[135]

Ren, Z. W.; Ding, Y. F.; Nie, J. H.; Wang, F.; Xu, L.; Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2019, 11, 6143–6153.

[136]

Jao, Y. T.; Yang, P. K.; Chiu, C. M.; Lin, Y. J.; Chen, S. W.; Choi, D.; Lin, Z. H. A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy 2018, 50, 513–520.

[137]

Zhang, D. Z.; Xu, Z. Y.; Yang, Z. M.; Song, X. S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251.

[138]

Juan, Y. M.; Chang, S. J.; Hsueh, H. T.; Chen, T. C.; Huang, S. W.; Lee, Y. H.; Hsueh, T. J.; Wu, C. L. Self-powered hybrid humidity sensor and dual-band UV photodetector fabricated on back-contact photovoltaic cell. Sens. Actuators B Chem. 2015, 219, 43–49.

[139]

Shen, D. Z.; Xiao, M.; Xiao, Y.; Zou, G. S.; Hu, L. F.; Zhao, B.; Liu, L.; Duley, W. W.; Zhou, Y. N. Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation. ACS Appl. Mater. Interfaces 2019, 11, 14249–14255.

[140]

Jang, J.; Kang, K.; Raeis-Hosseini, N.; Ismukhanova, A.; Jeong, H.; Jung, C.; Kim, B.; Lee, J. Y.; Park, I.; Rho, J. Self-powered humidity sensor using chitosan-based plasmonic metal-hydrogel-metal filters. Adv. Opt. Mater. 2020, 8, 1901932.

[141]

Blank, T. A.; Eksperiandova, L. P.; Belikov, K. N. Recent trends of ceramic humidity sensors development: A review. Sens. Actuators B Chem. 2016, 228, 416–442.

[142]

Jiang, B. Q.; Bi, Z. X.; Hao, Z.; Yuan, Q. C.; Feng, D. Y.; Zhou, K. M.; Zhang, L.; Gan, X. T.; Zhao, J. L. Graphene oxide-deposited tilted fiber grating for ultrafast humidity sensing and human breath monitoring. Sens. Actuators B Chem. 2019, 293, 336–341.

[143]

Xiao, S. H.; Nie, J. X.; Tan, R.; Duan, X. C.; Ma, J. M.; Li, Q. H.; Wang, T. H. Fast-response ionogel humidity sensor for real-time monitoring of breathing rate. Mater. Chem. Front. 2019, 3, 484–491.

[144]

Zhao, X. L.; Long, Y.; Yang, T. T.; Li, J.; Zhu, H. W. Simultaneous high sensitivity sensing of temperature and humidity with graphene woven fabrics. ACS Appl. Mater. Interfaces 2017, 9, 30171–30176.

[145]

Kano, S.; Kim, K.; Fujii, M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens. 2017, 2, 828–833.

[146]

Li, T.; Li, L. H.; Sun, H. W.; Xu, Y.; Wang, X. W.; Luo, H.; Liu, Z.; Zhang, T. Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv. Sci. 2017, 4, 1600404.

[147]

He, J.; Xiao, P.; Shi, J. W.; Liang, Y.; Lu, W.; Chen, Y. S.; Wang, W. Q.; Théato, P.; Kuo, S. W.; Chen, T. High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction. Chem. Mater. 2018, 30, 4343–4354.

Nano Research
Pages 11938-11958
Cite this article:
Zhang D, Wang M, Tang M, et al. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Research, 2023, 16(10): 11938-11958. https://doi.org/10.1007/s12274-022-4917-y
Topics:
Part of a topical collection:

1437

Views

39

Crossref

43

Web of Science

40

Scopus

0

CSCD

Altmetrics

Received: 23 June 2022
Revised: 23 June 2022
Accepted: 09 August 2022
Published: 27 September 2022
© Tsinghua University Press 2022
Return