Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A multi-technique approach to prove the preparation of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudorotaxanes (PEDOT∙CB7-PPs) is reported. Molecular docking simulation and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) validate the complexation ability of the CB7 molecule towards 3,4-ethylenedioxythiophene (EDOT), which leads to the EDOT∙CB7 inclusion complex. Oxidative polymerization of EDOT∙CB7 enabled the synthesis of PEDOT∙CB7-PPs. The water-soluble part of PEDOT∙CB7-PPs was selected, freeze-dried, and chemically characterized. Furthermore, dynamic light scattering (DLS) has been used to study the particle size and z-potential (ZP-ζ) of PEDOT∙CB7-PPs. The ZP-ζ value (35 mV) evidenced that the PEDOT∙CB7-PPs formed stable water dispersion. By combining the emerging nanopore resistive pulse sensing technique (Np-RPS) and computational modeling, we identified strong interactions of PEDOT∙CB7-PPs with the aerolysin (Ael) nanopore. PEDOT∙CB7-PPs behave as positive charged species, and thus trans negative bias promotes its interactions with the Ael nanopore. The computational modeling results are fully consistent with the Np-RPS detection, which also reveals strong interactions between PEDOT∙CB7-PPs and the Ael nanopore. With this study, we hope to provide new insights and a better understanding of the interactions between supramolecular complexes based on CB7 and biological entities, which is instrumental for future applications in the field of nanobiotechnology.
Zeglio, E.; Rutz, A. L.; Winkler, T. E.; Malliaras, G. G.; Herland, A. Conjugated polymers for assessing and controlling biological functions. Adv. Mater. 2019, 31, 1806712.
Zeglio, E.; Inganäs, O. Active materials for organic electrochemical transistors. Adv. Mater. 2018, 30, 1800941.
Berggren, M.; Crispin, X.; Fabiano, S.; Jonsson, M. P.; Simon, D. T.; Stavrinidou, E.; Tybrandt, K.; Zozoulenko, I. Organic electrochemical devices: Ion electron-coupled functionality in materials and devices based on conjugated polymers. Adv. Mater. 2019, 31, 1970160.
Groenendaal, L.; Zotti, G.; Aubert, P. H.; Waybright, S. M.; Reynolds, J. R. Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater. 2003, 15, 855–879.
Fenoy, G. E.; Azzaroni, O.; Knoll, W.; Marmisollé, W. A. Functionalization strategies of PEDOT and PEDOT:PSS films for organic bioelectronics applications. Chemosensors 2021, 9, 212.
Hardy, J. G.; Lee, J. Y.; Schmidt, C. E. Biomimetic conducting polymer-based tissue scaffolds. Curr. Opin. Biotechnol. 2013, 24, 847–854.
Nelson, A.; Belitsky, J. M.; Vidal, S.; Joiner, C. S.; Baum, L. G.; Stoddart, J. F. A self-assembled multivalent pseudopolyrotaxane for binding galectin-1. J. Am. Chem. Soc. 2004, 126, 11914–11922.
Nelson, A.; Stoddart, J. F. Dynamic multivalent lactosides displayed on cyclodextrin beads dangling from polymer strings. Org. Lett. 2003, 5, 3783–3786.
Chinai, J. M.; Taylor, A. B.; Ryno, L. M.; Hargreaves, N. D.; Morris, C. A.; Hart, P. J.; Urbach, A. R. Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc. 2011, 133, 8810–8813.
Hennig, A.; Nau, W. M. Interaction of cucurbit[7]uril with protease substrates: Application to nanosecond time-resolved fluorescence assays. Front. Chem. 2020, 8, 806.
Farcas, A.; Assaf, K. I.; Resmerita, A. M.; Sacarescu, L.; Asandulesa, M.; Aubert, P. H; Nau, W. M. Cucurbit[7]uril-threaded poly(3,4-ethylenedioxythiophene): A novel processable conjugated polyrotaxane. Eur. J. Org. Chem. 2019, 2019, 3442–3450.
Ouldali, H.; Sarthak, K.; Ensslen, T.; Piguet, F.; Manivet, P.; Pelta, J.; Behrends, J. C.; Aksimentiev, A.; Oukhaled, A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 2020, 38, 176–181.
Degiacomi, M. T.; Iacovache, I.; Pernot, L.; Chami, M.; Kudryashev, M.; Stahlberg, H.; Van Der Goot, F. G.; Dal Peraro, M. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat. Chem. Biol. 2013, 9, 623–629.
Boukhet, M.; Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Pelta, J.; Oukhaled, A. Probing driving forces in aerolysin and α-hemolysin biological nanopores: Electrophoresis versus electroosmosis. Nanoscale 2016, 8, 18352–18359.
Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Manivet, P.; Pelta, J.; Oukhaled, A. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 2018, 9, 966.
Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Comput. Chem. 1998, 19, 1639–1662.
Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA—A self-parameterizing force field. Proteins 2002, 47, 393–402.
Meng, H.; Perepichka, D. F.; Bendikov, M.; Wudl, F.; Pan, G. Z.; Yu, W. J.; Dong, W. J.; Brown, S. Solid-state synthesis of a conducting polythiophene via an unprecedented heterocyclic coupling reaction. J. Am. Chem. Soc. 2003, 125, 15151–15162.
Zhao, Q.; Jamal, R.; Zhang, L.; Wang, M. C.; Abdiryim, T. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res. Lett. 2014, 9, 557.
Tamburri, E.; Orlanducci, S.; Toschi, F.; Terranova, M. L.; Passeri, D. Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth. Met. 2009, 159, 406–414.
Ma, Z.; Qiang, L. L.; Fan, Q. L.; Wang, Y. Y.; Pu, K. Y.; Yin, R.; Huang, W. Direct laser desorption/ionization time-of-flight mass spectrometry of conjugated polymers. J. Mass. Spectrom. 2007, 42, 20–24.
Farcas, A.; Liu, Y. C.; Nilam, M.; Balan-Porcarasu, M.; Ursu, E. L.; Nau, W. M.; Hennig, A. Synthesis and photophysical properties of inclusion complexes between conjugated polyazomethines with γ-cyclodextrin and its tris-O-methylated derivative. Eur. Polym. J. 2019, 113, 236–243.
Horii, T.; Hikawa, H.; Katsunuma, M.; Okuzaki, H. Synthesis of highly conductive PEDOT:PSS and correlation with hierarchical structure. Polymer 2018, 140, 33–38.
Jain, K.; Mehandzhiyski, A. Y.; Zozoulenko, I.; Wågberg, L. PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential. J. Colloid Interface Sci. 2021, 584, 57–66.
Uskoković, V. Dynamic light scattering based microelectrophoresis: Main prospects and limitations. J. Dispersion Sci. Technol. 2012, 33, 1762–1786.
Ying, Y. L.; Long, Y. T. Nanopore-based single-biomolecule interfaces: From information to knowledge. J. Am. Chem. Soc. 2019, 141, 15720–15729.
Kasianowicz, J. J.; Robertson, J. W. F.; Chan, E. R.; Reiner, J. E.; Stanford, V. M. Nanoscopic porous sensors. Annu. Rev. Anal. Chem. 2008, 1, 737–766.
Mamad-Hemouch, H.; Ramoul, H.; Abou Taha, M.; Bacri, L.; Huin, C.; Przybylski, C.; Oukhaled, A.; Thiébot, B.; Patriarche, G.; Jarroux, N. et al. Biomimetic nanotubes based on cyclodextrins for ion-channel applications. Nano Lett. 2015, 15, 7748–7754.
You, Y.; Zhou, K.; Guo, B. Y.; Liu, Q. S.; Cao, Z.; Liu, L.; Wu, H. C. Measuring binding constants of cucurbituril-based host-guest interactions at the single-molecule level with nanopores. ACS Sens. 2019, 4, 774–779.
Braha, O.; Webb, J.; Gu, L. Q.; Kim, K.; Bayley, H. Carriers versus adapters in stochastic sensing. ChemPhysChem. 2005, 6, 889–892.
Rekharsky, M. V.; Yamamura, H.; Ko, Y. H.; Selvapalam, N.; Kim, K.; Inoue, Y. Sequence recognition and self-sorting of a dipeptide by cucurbit[6]uril and cucurbit[7]uril. Chem. Commun. 2008, 2236–2238.
Piguet, F.; Discala, F.; Breton, M. F.; Pelta, J.; Bacri, L.; Oukhaled, A. Electroosmosis through α-hemolysin that depends on alkali cation type. J. Phys. Chem. Lett. 2014, 5, 4362–4367.
Trott, O.; Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.
Kapf, A.; Albrecht, M. Discrimination of proteins through interaction with pyrene-labelled polymer aggregates. J. Mater. Chem. B 2018, 6, 6599–6606.