AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Structural characteristics and the label-free detection of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudorotaxane at single molecule level

Aurica Farcas1( )Hadjer Ouldali2Corneliu Cojocaru1Manuela Pastoriza-Gallego2Ana-Maria Resmerita1Abdelghani Oukhaled2( )
“Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
CY Cergy Paris Université, CNRS, LAMBE, 95000 Cergy, France
Show Author Information

Graphical Abstract

Nanopore resistive pulse-sensing technique and computational modeling demonstrate the strong interactions of the poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudorotaxane with a biological aerolysin nanopore. This approach could provide an unexpected opportunity to develop new classes of biomimetic ionic channels useful for broad applications in the field of nanobiotechnology.

Abstract

A multi-technique approach to prove the preparation of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudorotaxanes (PEDOT∙CB7-PPs) is reported. Molecular docking simulation and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) validate the complexation ability of the CB7 molecule towards 3,4-ethylenedioxythiophene (EDOT), which leads to the EDOT∙CB7 inclusion complex. Oxidative polymerization of EDOT∙CB7 enabled the synthesis of PEDOT∙CB7-PPs. The water-soluble part of PEDOT∙CB7-PPs was selected, freeze-dried, and chemically characterized. Furthermore, dynamic light scattering (DLS) has been used to study the particle size and z-potential (ZP-ζ) of PEDOT∙CB7-PPs. The ZP-ζ value (35 mV) evidenced that the PEDOT∙CB7-PPs formed stable water dispersion. By combining the emerging nanopore resistive pulse sensing technique (Np-RPS) and computational modeling, we identified strong interactions of PEDOT∙CB7-PPs with the aerolysin (Ael) nanopore. PEDOT∙CB7-PPs behave as positive charged species, and thus trans negative bias promotes its interactions with the Ael nanopore. The computational modeling results are fully consistent with the Np-RPS detection, which also reveals strong interactions between PEDOT∙CB7-PPs and the Ael nanopore. With this study, we hope to provide new insights and a better understanding of the interactions between supramolecular complexes based on CB7 and biological entities, which is instrumental for future applications in the field of nanobiotechnology.

Electronic Supplementary Material

Download File(s)
12274_2022_4918_MOESM1_ESM.pdf (797.9 KB)

References

[1]

Zeglio, E.; Rutz, A. L.; Winkler, T. E.; Malliaras, G. G.; Herland, A. Conjugated polymers for assessing and controlling biological functions. Adv. Mater. 2019, 31, 1806712.

[2]

Zeglio, E.; Inganäs, O. Active materials for organic electrochemical transistors. Adv. Mater. 2018, 30, 1800941.

[3]

Berggren, M.; Crispin, X.; Fabiano, S.; Jonsson, M. P.; Simon, D. T.; Stavrinidou, E.; Tybrandt, K.; Zozoulenko, I. Organic electrochemical devices: Ion electron-coupled functionality in materials and devices based on conjugated polymers. Adv. Mater. 2019, 31, 1970160.

[4]

Groenendaal, L.; Zotti, G.; Aubert, P. H.; Waybright, S. M.; Reynolds, J. R. Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater. 2003, 15, 855–879.

[5]

Fenoy, G. E.; Azzaroni, O.; Knoll, W.; Marmisollé, W. A. Functionalization strategies of PEDOT and PEDOT:PSS films for organic bioelectronics applications. Chemosensors 2021, 9, 212.

[6]

Hardy, J. G.; Lee, J. Y.; Schmidt, C. E. Biomimetic conducting polymer-based tissue scaffolds. Curr. Opin. Biotechnol. 2013, 24, 847–854.

[7]

Nelson, A.; Belitsky, J. M.; Vidal, S.; Joiner, C. S.; Baum, L. G.; Stoddart, J. F. A self-assembled multivalent pseudopolyrotaxane for binding galectin-1. J. Am. Chem. Soc. 2004, 126, 11914–11922.

[8]

Nelson, A.; Stoddart, J. F. Dynamic multivalent lactosides displayed on cyclodextrin beads dangling from polymer strings. Org. Lett. 2003, 5, 3783–3786.

[9]

Chinai, J. M.; Taylor, A. B.; Ryno, L. M.; Hargreaves, N. D.; Morris, C. A.; Hart, P. J.; Urbach, A. R. Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc. 2011, 133, 8810–8813.

[10]

Hennig, A.; Nau, W. M. Interaction of cucurbit[7]uril with protease substrates: Application to nanosecond time-resolved fluorescence assays. Front. Chem. 2020, 8, 806.

[11]

Farcas, A.; Assaf, K. I.; Resmerita, A. M.; Sacarescu, L.; Asandulesa, M.; Aubert, P. H; Nau, W. M. Cucurbit[7]uril-threaded poly(3,4-ethylenedioxythiophene): A novel processable conjugated polyrotaxane. Eur. J. Org. Chem. 2019, 2019, 3442–3450.

[12]

Ouldali, H.; Sarthak, K.; Ensslen, T.; Piguet, F.; Manivet, P.; Pelta, J.; Behrends, J. C.; Aksimentiev, A.; Oukhaled, A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 2020, 38, 176–181.

[13]

Degiacomi, M. T.; Iacovache, I.; Pernot, L.; Chami, M.; Kudryashev, M.; Stahlberg, H.; Van Der Goot, F. G.; Dal Peraro, M. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat. Chem. Biol. 2013, 9, 623–629.

[14]

Boukhet, M.; Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Pelta, J.; Oukhaled, A. Probing driving forces in aerolysin and α-hemolysin biological nanopores: Electrophoresis versus electroosmosis. Nanoscale 2016, 8, 18352–18359.

[15]

Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Manivet, P.; Pelta, J.; Oukhaled, A. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 2018, 9, 966.

[16]

Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Comput. Chem. 1998, 19, 1639–1662.

[17]
YASARA. Yet another scientific artificial reality application: Molecular graphics, modelling and simulation program [Online]. www.yasara.org (accessed February 1, 2022).
[18]

Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA—A self-parameterizing force field. Proteins 2002, 47, 393–402.

[19]

Meng, H.; Perepichka, D. F.; Bendikov, M.; Wudl, F.; Pan, G. Z.; Yu, W. J.; Dong, W. J.; Brown, S. Solid-state synthesis of a conducting polythiophene via an unprecedented heterocyclic coupling reaction. J. Am. Chem. Soc. 2003, 125, 15151–15162.

[20]

Zhao, Q.; Jamal, R.; Zhang, L.; Wang, M. C.; Abdiryim, T. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res. Lett. 2014, 9, 557.

[21]

Tamburri, E.; Orlanducci, S.; Toschi, F.; Terranova, M. L.; Passeri, D. Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth. Met. 2009, 159, 406–414.

[22]

Ma, Z.; Qiang, L. L.; Fan, Q. L.; Wang, Y. Y.; Pu, K. Y.; Yin, R.; Huang, W. Direct laser desorption/ionization time-of-flight mass spectrometry of conjugated polymers. J. Mass. Spectrom. 2007, 42, 20–24.

[23]

Farcas, A.; Liu, Y. C.; Nilam, M.; Balan-Porcarasu, M.; Ursu, E. L.; Nau, W. M.; Hennig, A. Synthesis and photophysical properties of inclusion complexes between conjugated polyazomethines with γ-cyclodextrin and its tris-O-methylated derivative. Eur. Polym. J. 2019, 113, 236–243.

[24]

Horii, T.; Hikawa, H.; Katsunuma, M.; Okuzaki, H. Synthesis of highly conductive PEDOT:PSS and correlation with hierarchical structure. Polymer 2018, 140, 33–38.

[25]

Jain, K.; Mehandzhiyski, A. Y.; Zozoulenko, I.; Wågberg, L. PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential. J. Colloid Interface Sci. 2021, 584, 57–66.

[26]

Uskoković, V. Dynamic light scattering based microelectrophoresis: Main prospects and limitations. J. Dispersion Sci. Technol. 2012, 33, 1762–1786.

[27]

Ying, Y. L.; Long, Y. T. Nanopore-based single-biomolecule interfaces: From information to knowledge. J. Am. Chem. Soc. 2019, 141, 15720–15729.

[28]

Kasianowicz, J. J.; Robertson, J. W. F.; Chan, E. R.; Reiner, J. E.; Stanford, V. M. Nanoscopic porous sensors. Annu. Rev. Anal. Chem. 2008, 1, 737–766.

[29]

Mamad-Hemouch, H.; Ramoul, H.; Abou Taha, M.; Bacri, L.; Huin, C.; Przybylski, C.; Oukhaled, A.; Thiébot, B.; Patriarche, G.; Jarroux, N. et al. Biomimetic nanotubes based on cyclodextrins for ion-channel applications. Nano Lett. 2015, 15, 7748–7754.

[30]

You, Y.; Zhou, K.; Guo, B. Y.; Liu, Q. S.; Cao, Z.; Liu, L.; Wu, H. C. Measuring binding constants of cucurbituril-based host-guest interactions at the single-molecule level with nanopores. ACS Sens. 2019, 4, 774–779.

[31]

Braha, O.; Webb, J.; Gu, L. Q.; Kim, K.; Bayley, H. Carriers versus adapters in stochastic sensing. ChemPhysChem. 2005, 6, 889–892.

[32]

Rekharsky, M. V.; Yamamura, H.; Ko, Y. H.; Selvapalam, N.; Kim, K.; Inoue, Y. Sequence recognition and self-sorting of a dipeptide by cucurbit[6]uril and cucurbit[7]uril. Chem. Commun. 2008, 2236–2238.

[33]
Bakshloo, M. A.; Yahiaoui, S.; Piguet, F.; Pastoriza-Gallego, M.; Daniel, R.; Mathé, J.; Kasianowicz, J. J.; Oukhaled, A. Polypeptide analysis for nanopore-based protein identification. Nano Res., in press, https://doi.org/10.1007/s12274-022-4610-1.
[34]

Piguet, F.; Discala, F.; Breton, M. F.; Pelta, J.; Bacri, L.; Oukhaled, A. Electroosmosis through α-hemolysin that depends on alkali cation type. J. Phys. Chem. Lett. 2014, 5, 4362–4367.

[35]

Trott, O.; Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.

[36]

Kapf, A.; Albrecht, M. Discrimination of proteins through interaction with pyrene-labelled polymer aggregates. J. Mater. Chem. B 2018, 6, 6599–6606.

Nano Research
Pages 2728-2737
Cite this article:
Farcas A, Ouldali H, Cojocaru C, et al. Structural characteristics and the label-free detection of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudorotaxane at single molecule level. Nano Research, 2023, 16(2): 2728-2737. https://doi.org/10.1007/s12274-022-4918-x
Topics:

915

Views

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 24 June 2022
Revised: 26 July 2022
Accepted: 16 August 2022
Published: 03 October 2022
© Tsinghua University Press 2022
Return