AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The immune-chemo-embolization effect of temperature sensitive gold nanomedicines against liver cancer

Yiming Liu1,6,§Dingwen Shi2,§Yanqiao Ren1,6,§Ling Li3Yanbing Zhao2,4( )Chuansheng Zheng1,6( )Xiangliang Yang2,4,5
Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
School of Biomedical Engineering, Hubei University of Science and Technology, Xianning 437100, China
Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
GBA Research Innovation Institute for Nanotechnology, Guangzhou 510530, China
Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China

§ Yiming Liu, Dingwen Shi, and Yanqiao Ren contributed equally to this work.

Show Author Information

Graphical Abstract

Gold nanoparticles and doxorubicin (DOX) were both modified into the temperature sensitive polymers. Besides the computed tomography (CT) imaging caused by gold nanoparticles, the slowly release of DOX could enhance the tumor apoptosis, which increased the infiltration of CD3+ and CD8+ cells, and improve the tumor immune microenvironment, thereby inhibiting the tumor growth and metastasis.

Abstract

Although transcatheter arterial chemo-embolization (TACE) plays a key role on clinical treatment of hepatocellular carcinoma (HCC), it was greatly limited by the poor synergistic effect between chemotherapeutics and physical embolization to tumor-feeding arteries. In the present work, a temperature sensitive polymer poly(N-isopropylacrylamide-b-methacrylic acid) (PNA), which was modified with gold nanoparticles (AuNP@PNA), was successfully used to encapsulate doxorubicin (DOX) by electrostatic binding with their carboxyl groups. The resultant gold nanomedicines (AuNP@PNA/DOX) exhibited temperature responsive sol-gel phase transition, favorable shear thinning effect and X-ray angiography. By in vivo evaluation of vascular embolization on VX2-tumor-bearing rabbits, AuNP@PNA/DOX exhibited far better antitumor efficacy than Lipiodol/DOX, on either tumor growth inhibition, proliferation, apoptosis, necrosis or anti-metastasis. Owing to sufficient embolization to tumor vascular networks, AuNP@PNA/DOX down-regulated the expression levels of HIF-1α, VEGF and MMP-9, and prompted more efficient activation on CD3+/CD8+ T cells and the related cytokines, suggesting the synergistic effect between AuNP@PNA and DOX on the improvement of post-operative tumor immunosuppressive microenvironment. With their favorable pharmcokinetics and biocompatibility, AuNP@PNA/DOX is promising to be developed as a multi-functional artery-imaging/embolic agent with immune-chemo-embolization for enhancing TACE efficacy on HCC.

Electronic Supplementary Material

Download File(s)
12274_2022_4921_MOESM1_ESM.pdf (766.5 KB)

References

[1]

European Association for the Study of the Liver. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236.

[2]

Bruix, J.; Reig, M.; Sherman, M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 2016, 150, 835–853.

[3]

Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R. K.; Galle, P. R.; Mazzaferro, V.; Salem, R. et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693.

[4]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[5]

Iqbal, H.; Yang, T.; Li, T.; Zhang, M. Y.; Ke, H. T.; Ding, D. W.; Deng, Y. B.; Chen, H. B. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release 2021, 329, 997–1022.

[6]

Gu, W. X.; Qu, R. B.; Meng, F. H.; Cornelissen, J. J. L. M.; Zhong, Z. Y. Polymeric nanomedicines targeting hematological malignancies. J. Control. Release 2021, 337, 571–588.

[7]

Forner, A.; Gilabert, M.; Bruix, J.; Raoul, J. L. Treatment of intermediate-stage hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2014, 11, 525–535.

[8]

Hu, J. J.; Albadawi, H.; Chong, B. W.; Deipolyi, A. R.; Sheth, R. A.; Khademhosseini, A.; Oklu, R. Advances in biomaterials and technologies for vascular embolization. Adv. Mater. 2019, 31, e1901071.

[9]

He, P.; Ren, E.; Chen, B. Q.; Chen, H.; Cheng, H. W.; Gao, X.; Liang, X. L.; Liu, H.; Li, J. D.; Li, B. et al. A super-stable homogeneous Lipiodol-hydrophilic chemodrug formulation for treatment of hepatocellular carcinoma. Theranostics 2022, 12, 1769–1782.

[10]

Song, M. J.; Chun, H. J.; Song, D. S.; Kim, H. Y.; Yoo, S. H.; Park, C. H.; Bae, S. H.; Choi, J. Y.; Chang, U. I.; Yang, J. M. et al. Comparative study between doxorubicin-eluting beads and conventional transarterial chemoembolization for treatment of hepatocellular carcinoma. J. Hepatol. 2012, 57, 1244–1250.

[11]

Nicolini, A.; Martinetti, L.; Crespi, S.; Maggioni, M.; Sangiovanni, A. Transarterial chemoembolization with epirubicin-eluting beads versus transarterial embolization before liver transplantation for hepatocellular carcinoma. J. Vasc. Interv. Radiol. 2010, 21, 327–332.

[12]

Qian, Y. Y.; Liu, Q. F.; Li, P. L.; Han, Y. B.; Zhang, J. P.; Xu, J. J.; Sun, J. W.; Wu, A. H.; Song, S. L.; Lu, W. Highly tumor-specific and long-acting iodine-131 microbeads for enhanced treatment of hepatocellular carcinoma with low-dose radio-chemoembolization. ACS Nano 2021, 15, 2933–2946.

[13]
Wang, Q.; Qian, K.; Liu, S. S.; Yang, Y. J.; Liang, B.; Zheng, C. S.; Yang, X. L.; Xu, H. B.; Shen, A. Q. X-ray visible and uniform alginate microspheres loaded with in situ synthesized BaSO4 nanoparticles for in vivo transcatheter arterial embolization. Biomacromolecules 2015, 16, 1240–1246.
[14]

Zeng, J.; Li, L.; Zhang, H. S.; Li, J. Y.; Liu, L. L.; Zhou, G. F.; Du, Q.; Zheng, C. S.; Yang, X. L. Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging during transcatheter arterial embolization. Theranostics 2018, 8, 4591–4600.

[15]

Chung, E. Y.; Kim, H. M.; Lee, G. H.; Kwak, B. K.; Jung, J. S.; Kuh, H. J.; Lee, J. Design of deformable chitosan microspheres loaded with superparamagnetic iron oxide nanoparticles for embolotherapy detectable by magnetic resonance imaging. Carbohydr. Polym. 2012, 90, 1725–1731.

[16]

Gaba, R. C.; Khabbaz, R. C.; Muchiri, R. N.; Morrison, J. D.; Elkhadragy, L.; Totura, W. M.; Samuelson, J. P.; Whiteley, H. E.; Deaton, R. L.; Nguyen, P. L. et al. Conventional versus drug-eluting embolic transarterial chemoembolization with doxorubicin: Comparative drug delivery, pharmacokinetics, and treatment response in a rabbit VX2 tumor model. Drug Deliv. Transl. Res. 2022, 12, 1105–1117.

[17]

Morimoto, K.; Sakaguchi, H.; Tanaka, T.; Yamamoto, K.; Anai, H.; Hayashi, T.; Satake, M.; Kichikawa, K. Transarterial chemoembolization using cisplatin powder in a rabbit model of liver cancer. Cardiovasc. Inter. Rad. 2008, 31, 981–985.

[18]

Pawlik, T. M.; Reyes, D. K.; Cosgrove, D.; Kamel, I. R.; Bhagat, N.; Geschwind, J. F. H. Phase II trial of sorafenib combined with concurrent transarterial chemoembolization with drug-eluting beads for hepatocellular carcinoma. J. Clin. Oncol. 2011, 29, 3960–3967.

[19]

Miyayama, S.; Matsui, O.; Yamashiro, M.; Ryu, Y.; Takata, H.; Takeda, T.; Aburano, H.; Shigenari, N. Iodized oil accumulation in the hypovascular tumor portion of early-stage hepatocellular carcinoma after ultraselective transcatheter arterial chemoembolization. Hepatol. Int. 2007, 1, 451–459.

[20]

Rubio, J. S.; Wojtowicz, D.; Amore, M. A.; Iriarte, G.; Di Pietrantonio, S. Giant idiopathic lymphocele 18 years after kidney transplantation, treated using lymphatic embolization with lipiodol: Report of a rare case. Exp. Clin. Transplant. 2021, 19, 1099–1102.

[21]

Shin, K.; Choi, J. W.; Ko, G.; Baik, S.; Kim, D.; Park, O. K.; Lee, K.; Cho, H. R.; Han, S. I.; Lee, S. H. et al. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures. Nat. Commun. 2017, 8, 15807.

[22]

Zhao, Y. B.; Zheng, C. S.; Wang, Q.; Fang, J. L.; Zhou, G. F.; Zhao, H.; Yang, Y. J.; Xu, H. B.; Feng, G. S.; Yang, X. L. Permanent and peripheral embolization: Temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors. Adv. Funct. Mater. 2011, 21, 2035–2042.

[23]

Li, L.; Liu, Y. M.; Li, H.; Guo, X. P.; He, X. J.; Geng, S. N.; Zhao, H.; Peng, X. L.; Shi, D. W.; Xiong, B. et al. Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization. Theranostics 2018, 8, 6291–6306.

[24]

Liu, Y. M.; Peng, X. L.; Qian, K.; Ma, Y. Y.; Wan, J. S.; Li, H.; Zhang, H. S.; Zhou, G. F.; Xiong, B.; Zhao, Y. B. et al. Temperature sensitive p(N-isopropylacrylamide-co-acrylic acid) modified gold nanoparticles for trans-arterial embolization and angiography. J. Mater. Chem. B 2017, 5, 907–916.

[25]

Wan, J. S.; Geng, S. N.; Zhao, H.; Peng, X. L.; Zhou, Q.; Li, H.; He, M.; Zhao, Y. B.; Yang, X. L.; Xu, H. B. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration. J. Control. Release 2016, 235, 328–336.

[26]

Zhao, H.; Xu, J. B.; Wan, J. S.; Geng, S. N.; Li, H.; Peng, X. L.; Fu, Q. W.; He, M.; Zhao, Y. B.; Yang, X. L. Cisplatin-directed coordination-crosslinking nanogels with thermo/pH-sensitive triblock polymers: Improvement on chemotherapic efficacy via sustained release and drug retention. Nanoscale 2017, 9, 5859–5871.

[27]

Luan, S. Y.; Xie, R.; Yang, Y. S.; Xiao, X.; Zhou, J. F.; Li, X. K.; Fang, P. H.; Zeng, X. X.; Yu, X. R.; Chen, M. W. et al. Acid-responsive aggregated gold nanoparticles for radiosensitization and synergistic chemoradiotherapy in the treatment of esophageal cancer. Small 2022, 9, e2200115.

[28]

Qin, X. Y.; Yang, C. L.; Xu, H. B.; Zhang, R. Z.; Zhang, D.; Tu, J. Y.; Guo, Y. Y.; Niu, B. N.; Kong, L.; Zhang, Z. P. Cell-derived biogenetic gold nanoparticles for sensitizing radiotherapy and boosting immune response against cancer. Small 2021, 17, e2103984.

[29]

Bucharskaya, A. B.; Khlebtsov, N. G.; Khlebtsov, B. N.; Maslyakova, G. N.; Navolokin, N. A.; Genin, V. D.; Genina, E. A.; Tuchin, V. V. Photothermal and photodynamic therapy of tumors with plasmonic nanoparticles: Challenges and prospects. Materials 2022, 15, 1606.

[30]

Huang, N.; Liu, Y. Q.; Fang, Y. S.; Zheng, S. T.; Wu, J. H.; Wang, M. H.; Zhong, W.; Shi, M.; Xing, M.; Liao, W. J. Gold nanoparticles induce tumor vessel normalization and impair metastasis by inhibiting endothelial smad2/3 signaling. ACS Nano 2020, 14, 7940–7958.

[31]

Liu, Y.; Crawford, B. M.; Vo-Dinh, T. Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy 2018, 10, 1175–1188.

[32]

Cai, F. Y.; Li, S. Y.; Huang, H.; Iqbal, J.; Wang, C. R.; Jiang, X. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. J. Biomed. Mater. Res. A 2022, 110, 424–442.

[33]

Li, L.; Guo, X. P.; Peng, X. L.; Zhang, H. S.; Liu, Y. M.; Li, H.; He, X. J.; Shi, D. W.; Xiong, B.; Zhao, Y. B. et al. Radiofrequency-responsive dual-valent gold nanoclusters for enhancing synergistic therapy of tumor ablation and artery embolization. Nano Today 2020, 35, 100934.

[34]

Tischfield, D. J.; Gurevich, A.; Johnson, O.; Gatmaytan, I.; Nadolski, G. J.; Soulen, M. C.; Kaplan, D. E.; Furth, E.; Hunt, S. J.; Gade, T. P. F. Transarterial embolization modulates the immune response within target and nontarget hepatocellular carcinomas in a rat model. Radiology 2022, 303, 215–225.

[35]

Koivunen, E.; Arap, W.; Valtanen, H.; Rainisalo, A.; Medina, O. P.; Heikkilä, P.; Kantor, C.; Gahmberg, C. G.; Salo, T.; Konttinen, Y. T. et al. Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 1999, 17, 768–774.

[36]

Rankin, E. B.; Giaccia, A. J. Hypoxic control of metastasis. Science 2016, 352, 175–180.

[37]

Apte, R. S.; Chen, D. S.; Ferrara, N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019, 176, 1248–1264.

[38]

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.

[39]

Qian, K.; Ma, Y. Y.; Wan, J. S.; Geng, S. N.; Li, H.; Fu, Q. W.; Peng, X. L.; Kan, X. F.; Zhou, G. F.; Liu, W. et al. The studies about doxorubicin-loaded p(N-isopropyl-acrylamide-co-butyl methylacrylate) temperature-sensitive nanogel dispersions on the application in TACE therapies for rabbit VX2 liver tumor. J. Control. Release 2015, 212, 41–49.

[40]

Tomayko, M. M.; Reynolds, C. P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 1989, 24, 148–154.

[41]

Golfieri, R.; Cappelli, A.; Cucchetti, A.; Piscaglia, F.; Carpenzano, M.; Peri, E.; Ravaioli, M.; D'Errico-Grigioni, A.; Pinna, A. D.; Bolondi, L. Efficacy of selective transarterial chemoembolization in inducing tumor necrosis in small (<5 cm) hepatocellular carcinomas. Hepatology 2011, 53, 1580–1589.

[42]

Li, G. P.; Ye, L.; Pan, J. S.; Long, M. Y.; Zhao, Z. Z.; Yang, H. Y.; Tian, J.; Wen, Y. L.; Dong, S. L.; Guan, J. et al. Antitumoural hydroxyapatite nanoparticles-mediated hepatoma-targeted trans-arterial embolization gene therapy: In vitro and in vivo studies. Liver Int. 2012, 32, 998–1007.

[43]

Tong, C.; Liu, H.; Chen, R. H.; Zhu, F. T. The effect of TACE in combination with thalidomide-mediated adjuvant therapy on the levels of VEGF and bFGF in patients with hepatocellular carcinoma. Am. J. Transl. Res. 2021, 13, 5575–5581.

[44]

Xiao, E. H.; Hu, G. D.; Li, J. Q.; Huang, J. F. Transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma. Chin. J. Oncol. 2005, 27, 478–482.

[45]

Liang, B.; Zhao, D.; Liu, Y. M.; Guo, X. P.; Zhang, H. S.; Zhang, L. J.; Zheng, C. S. Chemoembolization of liver cancer with doxorubicin-loaded CalliSpheres microspheres: Plasma pharmacokinetics, intratumoral drug concentration, and tumor necrosis in a rabbit model. Drug Deliv. Transl. Res. 2020, 10, 185–191.

[46]

Gürsoy, N.; Yilmaz Öztürk, B.; Dağ, İ. Synthesis of intracellular and extracellular gold nanoparticles with a green machine and its antifungal activity. Turk. J. Biol. 2021, 45, 196–213.

[47]

Lee, N.; Choi, S. H.; Hyeon, T. Nano-sized CT contrast agents. Adv. Mater. 2013, 25, 2641–2660.

[48]

Balamurugan, K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int. J. Cancer 2016, 138, 1058–1066.

[49]

Martin, M. D.; Matrisian, L. M. The other side of MMPs: Protective roles in tumor progression. Cancer Metastasis Rev. 2007, 26, 717.

[50]

Mortezaee, K.; Majidpoor, J. The impact of hypoxia on immune state in cancer. Life Sci. 2021, 286, 120057.

[51]

Shi, D. W.; Zhang, H. S.; Zhang, H. N.; Li, L.; Li, S. P.; Zhao, Y. B.; Zheng, C. S.; Nie, G. J.; Yang, X. L. The synergistic blood-vessel-embolization of coagulation fusion protein with temperature sensitive nanogels in interventional therapies on hepatocellular carcinoma. Chem. Eng. J. 2022, 433, 134357.

[52]

Macek Jilkova, Z.; Ghelfi, J.; Decaens, T. Immunomodulation for hepatocellular carcinoma therapy: Current challenges. Curr. Opin. Oncol. 2022, 34, 155–160.

[53]
Oh, J.; Xia, X. Y.; Wong, W. K. R.; Wong, S. H. D.; Yuan, W. H.; Wang, H. X.; Lai, C. H. N.; Tian, Y.; Ho, Y. P.; Zhang, H. L. et al. The effect of the nanoparticle shape on T cell activation. Small, in press,https://doi.org/10.1002/smll.202107373.
Nano Research
Pages 2749-2761
Cite this article:
Liu Y, Shi D, Ren Y, et al. The immune-chemo-embolization effect of temperature sensitive gold nanomedicines against liver cancer. Nano Research, 2023, 16(2): 2749-2761. https://doi.org/10.1007/s12274-022-4921-2
Topics:

1308

Views

8

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 30 June 2022
Revised: 13 August 2022
Accepted: 16 August 2022
Published: 20 October 2022
© Tsinghua University Press 2022
Return