AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Plasmonic polydopamine-modified TiO2 nanotube substrates for surface-assisted laser desorption/ionization mass spectrometry imaging

Dong Chen1,§Mingyi Du1,§Yudi Huang1Yizhu Xu1Yingying Chen1Lianlian Ma1Qingrong Xie1Xinhai Zhu3Zilong Chen3Hanhong Xu1( )Xinzhou Wu1( )Zhibin Yin2( )
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China

§ Dong Chen and Mingyi Du contributed equally to this work.

Show Author Information

Graphical Abstract

A composite substrate, hydrophobic polydopamine-modified TiO2 nanotube coated with plasmonic gold nanoparticle (AuNP-hPDA-TDNT), is developed as the surface-assisted laser desorption/ionization (SALDI) substrate for dual-polarity detection of small-molecule metabolites and imprinting/tissue imaging, which is expected to expedite researches in nanomaterial development and life science.

Abstract

Mass spectrometry imaging (MSI) has made the spatio-chemical characterization of a broad range of small-molecule metabolites within biological tissues possible. However, available matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) suffers from severe background interferences in low-mass ranges and inhomogeneous matrix deposition. Thus, surface-assisted LDI-MS (SALDI-MS) has been an attractive alternative for high-sensitivity detection and imaging of small biomolecules. In this study, we construct a new composite substrate, hydrophobic polydopamine (hPDA)-modified TiO2 nanotube (TDNT) coated with plasmonic gold nanoparticle (AuNP-hPDA-TDNT), as a dual-polarity SALDI substrate using an easy and cost-effective fabrication approach. Benefitting from the synergistic effects of TDNT semiconductor and plasmonic PDA modification, this SALDI substrate exhibits superior performance for dual-polarity detection of a vast diversity of small molecules. Highly reduced background interferences, lower detection limits, and spot-to-spot repeatability can be achieved using AuNP-hPDA-TDNT substrates. Due to its unique imprinting performance, various metabolites and lipids can be visualized within jatropha integerrima petals, ginkgo leaves, strawberry fruits, and latent fingerprints. More valuably, the universality of this matrix-free substrate is demonstrated for mapping spatial distribution of lipids within mouse brain tissue sections. Considered together, this AuNP-hPDA-TDNT material is expected to be a promising SALDI substrate in various fields, especially in nanomaterial development and life sciences.

Electronic Supplementary Material

Download File(s)
12274_2022_4924_MOESM1_ESM.pdf (18.8 MB)

References

[1]

Wang, T. T.; Cheng, X. L.; Xu, H. X.; Meng, Y. F.; Yin, Z. B.; Li, X. P.; Hang, W. Perspective on advances in laser-based high-resolution mass spectrometry imaging. Anal. Chem. 2020, 92, 543–553.

[2]

Li, X. P.; Hang, L.; Wang, T. T.; Leng, Y. X.; Zhang, H.; Meng, Y. F.; Yin, Z. B.; Hang, W. Nanoscale three-dimensional imaging of drug distributions in single cells via laser desorption post-ionization mass spectrometry. J. Am. Chem. Soc. 2021, 143, 21648–21656.

[3]

Cheng, X. L.; Yin, Z. B.; Ring, L.; Hang, W. Subcellular chemical imaging of structurally similar acridine drugs by near-field laser desorption/laser postionization mass spectrometry. Nano Res. 2020, 13, 745–751.

[4]

Meng, Y. F.; Cheng, X. L.; Wang, T. T.; Hang, W.; Li, X. P.; Nie, W.; Liu, R.; Lin, Z.; Hang, L.; Yin, Z. B. et al. Micro-lensed fiber laser desorption mass spectrometry imaging reveals subcellular distribution of drugs within single cells. Angew. Chem., Int. Ed. 2020, 59, 17864–17871.

[5]

Yin, Z. B.; Cheng, X. L.; Liu, R.; Li, X. P.; Hang, L.; Hang, W.; Xu, J. Y.; Yan, X. M.; Li, J. F.; Tian, Z. Q. Chemical and topographical single-cell imaging by near-field desorption mass spectrometry. Angew. Chem., Int. Ed. 2019, 58, 4541–4546.

[6]

Sun, C. L.; Li, T. G.; Song, X. W.; Huang, L. J.; Zang, Q. C.; Xu, J.; Bi, N.; Jiao, G. G.; Hao, Y. Z.; Chen, Y. H. et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc. Natl. Acad. Sci. USA 2019, 116, 52–57.

[7]

Kompauer, M.; Heiles, S.; Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-µm lateral resolution. Nat. Methods 2017, 14, 90–96.

[8]

Kompauer, M.; Heiles, S.; Spengler, B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nat. Methods 2017, 14, 1156–1158.

[9]

Ellis, S. R.; Paine, M. R. L.; Eijkel, G. B.; Pauling, J. K.; Husen, P.; Jervelund, M. W.; Hermansson, M.; Ejsing, C. S.; Heeren, R. M. A. Automated, parallel mass spectrometry imaging and structural identification of lipids. Nat. Methods 2018, 15, 515–518.

[10]

Dong, X. L.; Cheng, J. S.; Li, J. H.; Wang, Y. S. Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal. Chem. 2010, 82, 6208–6214.

[11]

Yan, B.; Kim, S. T.; Kim, C. S.; Saha, K.; Moyano, D. F.; Xing, Y. Q.; Jiang, Y.; Roberts, A. L.; Alfonso, F. S.; Rotello, V. M. et al. Multiplexed imaging of nanoparticles in tissues using laser desorption/ionization mass spectrometry. J. Am. Chem. Soc. 2013, 135, 12564–12567.

[12]

Zhao, D. T.; Ma, C. X.; Gao, M.; Li, Y.; Yang, B.; Li, H.; Zhang, R. H.; Hao, M. L.; Huang, J.; Liang, K. et al. Super-assembled sandwich-like Au@MSN@Ag nanomatrices for high-throughput and efficient detection of small biomolecules. Nano Res. 2022, 15, 2722–2733.

[13]

Li, X. X.; Kulkarni, A. S.; Liu, X.; Gao, W. Q.; Huang, L.; Hu, Z. Q.; Qian, K. Metal-organic framework hybrids aid metabolic profiling for colorectal cancer. Small Methods 2021, 5, 2001001.

[14]

Pei, C. C.; Liu, C.; Wang, Y.; Cheng, D.; Li, R. X.; Shu, W. K.; Zhang, C. Q.; Hu, W. L.; Jin, A. H.; Yang, Y. N. et al. FeOOH@metal-organic framework core-satellite nanocomposites for the serum metabolic fingerprinting of gynecological cancers. Angew. Chem., Int. Ed. 2020, 59, 10831–10835.

[15]

Wu, J.; Ouyang, D.; He, Y. T.; Su, H.; Yang, B. C.; Li, J.; Sun, Q. Q.; Lin, Z. A.; Cai, Z. W. Synergistic effect of metal-organic framework/gallic acid in enhanced laser desorption/ionization mass spectrometry. ACS Appl. Mater. Interfaces 2019, 11, 38255–38264.

[16]

Yang, C. J.; Yu, H. L.; Hu, X. F.; Chen, H. L.; Wu, H.; Deng, C. H.; Sun, N. R. Gold-doped covalent organic framework reveals specific serum metabolic fingerprints as point of Crohn’s disease diagnosis. Adv. Funct. Mater. 2021, 31, 2105478.

[17]

Yang, J.; Wang, R.; Huang, L.; Zhang, M. J.; Niu, J. Y.; Bao, C. D.; Shen, N.; Dai, M.; Guo, Q.; Wang, Q. et al. Urine metabolic fingerprints encode subtypes of kidney diseases. Angew. Chem., Int. Ed. 2020, 59, 1703–1710.

[18]

Chen, J. Y.; Li, Y. Z.; Jiang, Y. M.; Mao, L. C.; Lai, M.; Jiang, L. X.; Liu, H. H.; Nie, Z. W. TiO2/MXene-assisted LDI-MS for urine metabolic profiling in urinary disease. Adv. Funct. Mater. 2021, 31, 2106743.

[19]

Rejeeth, C.; Pang, X. C.; Zhang, R.; Xu, W.; Sun, X. M.; Liu, B.; Lou, J. T.; Wan, J. J.; Gu, H. C.; Yan, W. et al. Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core−shell particles. Nano Res. 2018, 11, 68–79.

[20]

Pei, C. C.; Wan, J. J. Nanocomposite-based matrices in laser desorption/ionization mass spectrometry for small-molecule analysis. Chem Plus Chem 2020, 85, 2419–2427.

[21]

Müller, W. H.; Verdin, A.; De Pauw, E.; Malherbe, C.; Eppe, G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. Mass Spectrom. Rev. 2022, 41, 373–420.

[22]

Iakab, S. A.; Rafols, P.; García-Altares, M.; Yanes, O.; Correig, X. Silicon-based laser desorption ionization mass spectrometry for the analysis of biomolecules: A progress report. Adv. Funct. Mater. 2019, 29, 1903609.

[23]

Wei, J.; Buriak, J. M.; Siuzdak, G. Desorption-ionization mass spectrometry on porous silicon. Nature 1999, 399, 243–246.

[24]

Trauger, S. A.; Go, E. P.; Shen, Z. X.; Apon, J. V.; Compton, B. J.; Bouvier, E. S. P.; Finn, M. G.; Siuzdak, G. High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal. Chem. 2004, 76, 4484–4489.

[25]

Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S. L.; Nordström, A.; Siuzdak, G. Clathrate nanostructures for mass spectrometry. Nature 2007, 449, 1033–1036.

[26]

Greving, M. P.; Patti, G. J.; Siuzdak, G. Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Anal. Chem. 2011, 83, 2–7.

[27]

Iakab, S. A.; Ràfols, P.; Tajes, M.; Correig-Blanchar, X.; García-Altares, M. Gold nanoparticle-assisted black silicon substrates for mass spectrometry imaging applications. ACS Nano 2020, 14, 6785–6794.

[28]

Lee, D. Y.; Platt, V.; Bowen, B.; Louie, K.; Canaria, C. A.; McMurray, C. T.; Northen, T. Resolving brain regions using nanostructure initiator mass spectrometry imaging of phospholipids. Integr. Biol. (Camb) 2012, 4, 693–699.

[29]

Stopka, S. A.; Rong, C.; Korte, A. R.; Yadavilli, S.; Nazarian, J.; Razunguzwa, T. T.; Morris, N. J.; Vertes, A. Molecular imaging of biological samples on nanophotonic laser desorption ionization platforms. Angew. Chem., Int. Ed. 2016, 55, 4482–4486.

[30]

Stopka, S. A.; Holmes, X. A.; Korte, A. R.; Compton, L. R.; Retterer, S. T.; Vertes, A. Trace analysis and reaction monitoring by nanophotonic ionization mass spectrometry from elevated bowtie and silicon nanopost arrays. Adv. Funct. Mater. 2018, 28, 1801730.

[31]

Go, E. P.; Apon, J. V.; Luo, G.; Saghatelian, A.; Daniels, R. H.; Sahi, V.; Dubrow, R.; Cravatt, B. F.; Vertes, A.; Siuzdak, G. Desorption/ionization on silicon nanowires. Anal. Chem. 2005, 77, 1641–1646.

[32]

Chen, X. M.; Wang, T.; Lin, L. M.; Wo, F. J.; Liu, Y. Q.; Liang, X.; Ye, H.; Wu, J. M. Tip-enhanced photoinduced electron transfer and ionization on vertical silicon nanowires. ACS Appl. Mater. Interfaces 2018, 10, 14389–14398.

[33]

Kurczy, M. E.; Zhu, Z. J.; Ivanisevic, J.; Schuyler, A. M.; Lalwani, K.; Santidrian, A. F.; David, J. M.; Giddabasappa, A.; Roberts, A. J.; Olivos, H. J. et al. Comprehensive bioimaging with fluorinated nanoparticles using breathable liquids. Nat. Commun. 2015, 6, 5998.

[34]

Yang, J.; Zhang, W. P.; Zhang, H. J.; Zhong, M. L.; Cao, W. B.; Li, Z. S.; Huang, X.; Nie, Z. X.; Liu, J. M.; Li, P. et al. Polydopamine-modified substrates for high-sensitivity laser desorption ionization mass spectrometry imaging. ACS Appl. Mater. Interfaces 2019, 11, 46140–46148.

[35]

Kim, Y. K.; Na, H. K.; Kwack, S. J.; Ryoo, S. R.; Lee, Y.; Hong, S.; Hong, S.; Jeong, Y.; Min, D. H. Synergistic effect of graphene oxide/mwcnt films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging. ACS Nano 2011, 5, 4550–4561.

[36]

Wang, X. N.; Tang, W. W.; Gordon, A.; Wang, H. Y.; Xu, L. R.; Li, P.; Li, B. Porous TiO2 film immobilized with gold nanoparticles for dual-polarity SALDI MS detection and imaging. ACS Appl. Mater. Interfaces 2020, 12, 42567–42575.

[37]

Wang, X. N.; Li, B. Monolithic gold nanoparticles/thiol-β-cyclodextrin-functionalized TiO2 nanowires for enhanced SALDI MS detection and imaging of natural products. Anal. Chem. 2022, 94, 952–959.

[38]

Kim, M. J.; Yun, T. G.; Noh, J. Y.; Song, Z. Q.; Kim, H. R.; Kang, M. J.; Pyun, J. C. Laser-induced surface reconstruction of nanoporous Au-modified TiO2 nanowires for in situ performance enhancement in desorption and ionization mass spectrometry. Adv. Funct. Mater. 2021, 31, 2102475.

[39]

Kim, M. J.; Yun, T. G.; Noh, J. Y.; Park, J. M.; Kang, M. J.; Pyun, J. C. Synergistic effect of the heterostructure of au nanoislands on TiO2 nanowires for efficient ionization in laser desorption/ionization mass spectrometry. ACS Appl. Mater. Interfaces 2019, 11, 20509–20520.

[40]

Sun, S. Y.; Liu, W. S.; Yang, J.; Wang, H.; Qian, K. Nanoparticle-assisted cation adduction and fragmentation of small metabolites. Angew. Chem., Int. Ed. 2021, 60, 11310–11317.

[41]

Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 2014, 8, 7630–7638.

[42]

Su, H. Y.; Li, X. X.; Huang, L.; Cao, J.; Zhang, M. J.; Vedarethinam, V.; Di, W.; Hu, Z. Q.; Qian, K. Plasmonic alloys reveal a distinct metabolic phenotype of early gastric cancer. Adv. Mater. 2021, 33, 2007978.

[43]

Kim, M. J.; Park, J. M.; Noh, J. Y.; Yun, T. G.; Kang, M. J.; Ku, N. S.; Lee, E. H.; Park, K. H.; Park, M. S.; Lee, S. G. et al. Coffee ring effect free TiO2 nanotube array for quantitative laser desorption/ionization mass spectrometry. ACS Appl. Nano Mater. 2020, 3, 9249–9259.

[44]

Woo, H. K.; Northen, T. R.; Yanes, O.; Siuzdak, G. Nanostructure-initiator mass spectrometry: A protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. Nat. Protoc. 2008, 3, 1341–1349.

[45]

Wu, Q.; Chu, J. L.; Rubakhin, S. S.; Gillette, M. U.; Sweedler, J. V. Dopamine-modified TiO2 monolith-assisted LDI MS imaging for simultaneous localization of small metabolites and lipids in mouse brain tissue with enhanced detection selectivity and sensitivity. Chem. Sci. 2017, 8, 3926–3938.

[46]

Sun, X. M.; Huang, L.; Zhang, R.; Xu, W.; Huang, J. Y.; Gurav, D. D.; Vedarethinam, V.; Chen, R. P.; Lou, J. T.; Wang, Q. et al. Metabolic fingerprinting on a plasmonic gold chip for mass spectrometry based in vitro diagnostics. ACS Cent. Sci. 2018, 4, 223–229.

[47]

Liu, Y. C.; Chiang, C. K.; Chang, H. T.; Lee, Y. F.; Huang, C. C. Using a functional nanogold membrane coupled with laser desorption/ionization mass spectrometry to detect lead ions in biofluids. Adv. Funct. Mater. 2011, 21, 4448–4455.

[48]

Liu, B.; Li, Y. L.; Wan, H.; Wang, L.; Xu, W.; Zhu, S. J.; Liang, Y. Y.; Zhang, B.; Lou, J. T.; Dai, H. J. et al. High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip. Adv. Funct. Mater. 2016, 26, 7994–8002.

[49]

Shu, W. K.; Wang, Y.; Liu, C.; Li, R. X.; Pei, C. C.; Lou, W. H.; Lin, S. H.; Di, W.; Wan, J. J. Construction of a plasmonic chip for metabolic analysis in cervical cancer screening and evaluation. Small Methods 2020, 4, 1900469.

[50]

Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393.

[51]

Wu, X. Z.; Qin, R.; Wu, H. X.; Yao, G. K.; Zhang, Y.; Li, P.; Xu, Y. Z.; Zhang, Z. X.; Yin, Z. B.; Xu, H. H. Nanoparticle-immersed paper imprinting mass spectrometry imaging reveals uptake and translocation mechanism of pesticides in plants. Nano Res. 2020, 13, 611–620.

[52]

Macák, J. M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem., Int. Ed. 2005, 44, 2100–2102.

[53]

Tsao, C. W.; Yang, Z. J. High sensitivity and high detection specificity of gold-nanoparticle-grafted nanostructured silicon mass spectrometry for glucose analysis. ACS Appl. Mater. Interfaces 2015, 7, 22630–22637.

[54]

Dong, Y. H.; Li, B.; Malitsky, S.; Rogachev, I.; Aharoni, A.; Kaftan, F.; Svatoš, A.; Franceschi, P. Sample preparation for mass spectrometry imaging of plant tissues: A review. Front. Plant Sci. 2016, 7, 60.

[55]

Dutkiewicz, E. P.; Su, C. H.; Lee, H. J.; Hsu, C. C.; Yang, Y. L. Visualizing vinca alkaloids in the petal of Catharanthus roseus using functionalized titanium oxide nanowire substrate for surface-assisted laser desorption/ionization imaging mass spectrometry. Plant J. 2021, 105, 1123–1133.

[56]

Li, B.; Neumann, E. K.; Ge, J. Y.; Gao, W.; Yang, H.; Li, P.; Sweedler, J. V. Interrogation of spatial metabolome of ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant Cell Environ. 2018, 41, 2693–2703.

[57]

Hinners, P.; Thomas, M.; Lee, Y. J. Determining fingerprint age with mass spectrometry imaging via ozonolysis of triacylglycerols. Anal. Chem. 2020, 92, 3125–3132.

[58]

Guinan, T.; Della Vedova, C.; Kobus, H.; Voelcker, N. H. Mass spectrometry imaging of fingerprint sweat on nanostructured silicon. Chem. Commun. 2015, 51, 6088–6091.

[59]

Xu, L. R.; Cao, Z. Y.; Ma, R. L.; Wang, Z. Z.; Qin, Q.; Liu, E. Y.; Su, B. Visualization of latent fingermarks by enhanced chemiluminescence immunoassay and pattern recognition. Anal. Chem. 2019, 91, 12859–12865.

[60]

Li, K.; Qin, W. W.; Li, F.; Zhao, X. C.; Jiang, B. W.; Wang, K.; Deng, S. H.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angew. Chem., Int. Ed. 2013, 52, 11542–11545.

[61]

Müller, W. H.; De Pauw, E.; Far, J.; Malherbe, C.; Eppe, G. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: A concise review of the last decade. Prog. Lipid Res. 2021, 83, 101114.

[62]

Berry, K. A. Z.; Hankin, J. A.; Barkley, R. M.; Spraggins, J. M.; Caprioli, R. M.; Murphy, R. C. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem. Rev. 2011, 111, 6491–6512.

[63]

Li, X. P.; Liang, Z. S.; Zhang, S. D.; Wang, T. T.; Hang, W. Sub-micrometer-scale chemical analysis by nanosecond-laser-induced tip-enhanced ablation and ionization time-of-flight mass spectrometry. Nano Res. 2018, 11, 5989–5996.

Nano Research
Pages 3028-3039
Cite this article:
Chen D, Du M, Huang Y, et al. Plasmonic polydopamine-modified TiO2 nanotube substrates for surface-assisted laser desorption/ionization mass spectrometry imaging. Nano Research, 2023, 16(2): 3028-3039. https://doi.org/10.1007/s12274-022-4924-z
Topics:

1048

Views

11

Crossref

7

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 10 July 2022
Revised: 11 August 2022
Accepted: 15 August 2022
Published: 26 August 2022
© Tsinghua University Press 2022
Return