AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Active-site and interface engineering of cathode materials for aqueous Zn–gas batteries

Wenxian Liu1Jinxiu Feng1Tianran Wei2Qian Liu3Shusheng Zhang4Yang Luo5,6Jun Luo7Xijun Liu2( )
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Ministry of Education (MOE) Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments, and Materials, Guangxi University, Nanning 530004, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
Empa, Swiss Federal Laboratories for Materials Science and Technology, Swiss Federal Institute of Technology in Zurich (ETH) Domain, Dübendorf CH-8600, Switzerland
Hong Kong Productivity Council (HKPC), Hong Kong 999077, China
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Show Author Information

Graphical Abstract

Recent advances in active sites and interface regulation strategies of cathode materials for Zn–gas batteries, including Zn–air, Zn-CO2, Zn-N2, and Zn-NO batteries, are summarized and discussed.

Abstract

Aqueous rechargeable Zn–gas batteries are regarded as promising energy storage and conversion devices due to their high safety and inherent environmental friendliness. However, the energy efficiency and power density of Zn–gas batteries are restricted by the kinetically sluggish cathode reactions, such as oxygen evolution reaction (OER) during charging and oxygen reduction reaction (ORR)/carbon dioxide reduction reaction (CO2RR)/nitrogen reduction reaction (NRR)/nitric oxide reduction reaction (NORR) during discharge. In this review, battery configurations and fundamental reactions in Zn–gas batteries are first introduced, including Zn–air, Zn-CO2, Zn-N2, and Zn-NO batteries. Afterward, recent advances in active site engineering for enhancing the intrinsic catalytic activities of cathode catalysts are summarized. Subsequently, the structure and surface regulation strategies of cathode materials for optimizing the three-phase interface and improving the performance of Zn–gas batteries are discussed. Finally, some personal perspectives for the future development of Zn–gas batteries are presented.

Electronic Supplementary Material

Download File(s)
12274_2022_4929_MOESM1_ESM.pdf (301.2 KB)

References

[1]

Wang, C.; Li, J.; Zhou, Z.; Pan, Y. Q.; Yu, Z. X.; Pei, Z. X.; Zhao, S. L.; Wei, L.; Chen, Y. Rechargeable zinc–air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem 2021, 3, 100055.

[2]

Zhao, S. Y.; Xia, D. W.; Li, M. H.; Cheng, D. Y.; Wang, K. L.; Meng, Y. S.; Chen, Z.; Bae, J. Self-healing and anti-CO2 hydrogels for flexible solid-state zinc–air batteries. ACS Appl. Mater. Interfaces 2021, 13, 12033–12041.

[3]

Li, L. P.; Liu, W. Y.; Dong, H. Y.; Gui, Q. Y.; Hu, Z. Q.; Li, Y. Y.; Liu, J. P. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices. Adv. Mater. 2021, 33, 2004959.

[4]

Xie, J. F.; Wang, Y. B. Recent development of CO2 electrochemistry from Li-CO2 batteries to Zn-CO2 batteries. Acc. Chem. Res. 2019, 52, 1721–1729.

[5]

Wang, H.; Li, Z. J.; Li, Y.; Yang, B.; Chen, J.; Lei, L. C.; Wang, S. B.; Hou, Y. An exfoliated iron phosphorus trisulfide nanosheet with rich sulfur vacancy for efficient dinitrogen fixation and Zn-N2 battery. Nano Energy 2021, 81, 105613.

[6]

Li, X. C.; Shen, P.; Luo, Y. J.; Li, Y. H.; Guo, Y. L.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205923.

[7]

Wang, X. Z.; Liu, S.; Zhang, H.; Zhang, S. S.; Meng, G.; Liu, Q.; Sun, Z. Y.; Luo, J.; Liu, X. J. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. Chem. Commun. 2022, 58, 7654–7657.

[8]

Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

[9]

Zhang, H.; Luo, Y.; Chu, P. K.; Liu, Q.; Liu, X. J.; Zhang, S. S.; Luo, J.; Wang, X. Z.; Hu, G. Z. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. J. Alloys Compd. 2022, 922, 166113.

[10]

Fu, G. L.; Li, W. W.; Zhang, J. Y.; Li, M. S.; Li, C. J.; Li, N.; He, Q.; Xi, S. B.; Qi, D. C.; MacManus-Driscoll, J. L. et al. Facilitating the deprotonation of OH to O through Fe4+-induced states in perovskite LaNiO3 enables a fast oxygen evolution reaction. Small 2021, 17, 2006930.

[11]

Liu, J. N.; Zhao, C. X.; Ren, D.; Wang, J.; Zhang, R.; Wang, S. H.; Zhao, C.; Li, B. Q.; Zhang, Q. Preconstructing asymmetric interface in air cathodes for high-performance rechargeable Zn–air batteries. Adv. Mater. 2022, 34, 2109407.

[12]

Qin, Y. J.; Han, X.; Li, Y. P.; Han, A. J.; Liu, W. X.; Xu, H. J.; Liu, J. F. Hollow mesoporous metal–organic frameworks with enhanced diffusion for highly efficient catalysis. ACS Catal. 2020, 10, 5973–5978.

[13]

Zhao, Z. J.; Liu, S. H.; Zha, S.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

[14]

Zhang, Q.; Zhang, S. S.; Luo, Y.; Liu, Q.; Luo, J.; Chu, P. K.; Liu, X. J. Preparation of high entropy alloys and application to catalytical water electrolysis. APL Mater. 2022, 10, 070701.

[15]

Meng, L. X.; Li, L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res. Energy 2022, 1, e9120020.

[16]
Meng, G.; Jin, M. M.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Peng, X. Y.; Luo, J.; Liu, X. J. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res., in press, https://doi.org/10.1007/s12274-022-4747-y.
[17]

Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal–organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.

[18]

Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal–organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 5512–5516.

[19]

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. C.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

[20]

Tang, C.; Wang, H. F.; Zhang, Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Acc. Chem. Res. 2018, 51, 881–889.

[21]

Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

[22]

Deng, Y. P.; Liang, R. L.; Jiang, G. P.; Jiang, Y.; Yu, A. P.; Chen, Z. W. The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 2020, 5, 1665–1675.

[23]

Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019, 20, 410–437.

[24]

Pei, Z. X. Symmetric is nonidentical: Operation history matters for Zn metal anode. Nano Res. Energy 2022, 1, e9120023.

[25]

Liu, H. R.; Shi, S. R.; Wang, Z. H.; Han, Y. H.; Huang, W. Recent advances in metal–gas batteries with carbon-based nonprecious metal catalysts. Small 2022, 18, 2103747.

[26]

Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

[27]
ZhaoZ.YuanZ. K.FangZ. S.JianJ. H.LiJ.YangM. J.MoC. S.ZhangY.HuX. H.LiP. In situ activating strategy to significantly boost oxygen electrocatalysis of commercial carbon cloth for flexible and rechargeable Zn–air batteriesAdv. Sci.20185180076010.1002/advs.201800760

Zhao, Z.; Yuan, Z. K.; Fang, Z. S.; Jian, J. H.; Li, J.; Yang, M. J.; Mo, C. S.; Zhang, Y.; Hu, X. H.; Li, P. et al. In situ activating strategy to significantly boost oxygen electrocatalysis of commercial carbon cloth for flexible and rechargeable Zn–air batteries. Adv. Sci. 2018, 5, 1800760.

[28]

Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER, and HER. Energy Environ. Sci. 2019, 12, 322–333.

[29]

Hu, T. T.; Jiang, Z. Q.; Fu, Z.; Jiang, Z. J. A NiFe/NiSe2 heterojunction bifunctional catalyst rich in oxygen vacancies introduced using dielectric barrier discharge plasma for liquid and flexible all-solid-state rechargeable Zn–air batteries. J. Mater. Chem. A 2022, 10, 8739–8750.

[30]

Zhang, Z. M.; Liang, X. L.; Li, J. F.; Qian, J. M.; Liu, Y. G.; Yang, S. L.; Wang, Y.; Gao, D. Q.; Xue, D. S. Interfacial engineering of NiO/NiCo2O4 porous nanofibers as efficient bifunctional catalysts for rechargeable zinc–air batteries. ACS Appl. Mater. Interfaces 2020, 12, 21661–21669.

[31]

Wang, Y. Y.; Li, Z. G.; Zhang, P.; Pan, Y.; Zhang, Y.; Cai, Q.; Silva, S. R. P.; Liu, J.; Zhang, G. X.; Sun, X. M. et al. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc–air batteries. Nano Energy 2021, 87, 106147.

[32]

Tang, K.; Hu, H. B.; Xiong, Y.; Chen, L.; Zhang, J. Y.; Yuan, C. Z.; Wu, M. Z. Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc–air batteries. Angew. Chem., Int. Ed. 2022, 61, e202202671.

[33]

Zheng, W. Z.; Wang, Y.; Shuai, L.; Wang, X. Y.; He, F.; Lei, C. J.; Li, Z. J.; Yang, B.; Lei, L. C.; Yuan, C. et al. Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv. Funct. Mater. 2021, 31, 2008146.

[34]

Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.

[35]

Hao, X. Q.; An, X. W.; Patil, A. M.; Wang, P. F.; Ma, X. L.; Du, X.; Hao, X. G.; Abudula, A.; Guan, G. Q. Biomass-derived N-doped carbon for efficient electrocatalytic CO2 reduction to CO and Zn-CO2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 3738–3747.

[36]

Gao, S. S.; Liu, Y. F.; Xie, Z. Y.; Qiu, Y.; Zhuo, L. C.; Qin, Y. J.; Ren, J. Q.; Zhang, S. S.; Hu, G. Z.; Luo, J. et al. Metal-free bifunctional ordered mesoporous carbon for reversible Zn-CO2 batteries. Small Methods 2021, 5, 2001039.

[37]

Teng, X.; Niu, Y. L.; Gong, S. Q.; Liu, X.; Chen, Z. F. Selective CO2 reduction to formate on heterostructured Sn/SnO2 nanoparticles promoted by carbon layer networks. J. Electrochem. 2022, 28, 2108441.

[38]

Ren, J. T.; Chen, L.; Liu, Y. P.; Yuan, Z. Y. Hollow cobalt phosphate microspheres for sustainable electrochemical ammonia production through rechargeable Zn-N2 batteries. J. Mater. Chem. A 2021, 9, 11370–11380.

[39]

Ren, J. T.; Chen, L.; Wang, H. Y.; Yuan, Z. Y. Aqueous rechargeable Zn-N2 battery assembled by bifunctional cobalt phosphate nanocrystals-loaded carbon nanosheets for simultaneous NH3 production and power generation. ACS Appl. Mater. Interfaces 2021, 13, 12106–12117.

[40]

Lv, X. W.; Liu, Y. P.; Wang, Y. S.; Liu, X. L.; Yuan, Z. Y. Encapsulating vanadium nitride nanodots into N, S-codoped graphitized carbon for synergistic electrocatalytic nitrogen reduction and aqueous Zn-N2 battery. Appl. Catal. B: -Environ. 2021, 280, 119434.

[41]

Wang, H.; Si, J. C.; Zhang, T. Y.; Li, Y.; Yang, B.; Li, Z. J.; Chen, J.; Wen, Z. H.; Yuan, C.; Lei, L. C. et al. Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Appl. Catal. B: -Environ. 2020, 270, 118892.

[42]

Liu, Q.; Lin, Y. T.; Yue, L. C.; Liang, J.; Zhang, L. C.; Li, T. S.; Luo, Y. S.; Liu, M. L.; You, J. M.; Alshehri, A. A. et al. Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Res. 2022, 15, 5032–5037.

[43]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

[44]

Mou, T.; Liang, J.; Ma, Z. Y.; Zhang, L. C.; Lin, Y. T.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. J. Mater. Chem. A 2021, 9, 24268–24275.

[45]

Chen, X. R.; Guo, Y. T.; Du, X. C.; Zeng, Y. S.; Chu, J. W.; Gong, C. H.; Huang, J. W.; Fan, C.; Wang, X. F.; Xiong, J. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv. Energy Mater. 2020, 10, 1903172.

[46]

Wu, J. K.; Liu, B.; Fan, X. Y.; Ding, J.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. Carbon-based cathode materials for rechargeable zinc–air batteries: From current collectors to bifunctional integrated air electrodes. Carbon Energy 2020, 2, 370–386.

[47]
Zhang, R.; Wu, Z. X.; Huang, Z. D.; Guo, Y.; Zhang, S. C.; Zhao, Y. W.; Zhi, C. Y. Recent advances for Zn–gas batteries beyond Zn–air/oxygen battery. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.06.023.
[48]

Loh, L.; Zhang, Z. P.; Bosman, M.; Eda, G. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 2021, 14, 1668–1681.

[49]

Lv, X. W.; Liu, X. L.; Gao, L. J.; Liu, Y. P.; Yuan, Z. Y. Iron-doped titanium dioxide hollow nanospheres for efficient nitrogen fixation and Zn-N2 aqueous batteries. J. Mater. Chem. A 2021, 9, 4026–4035.

[50]

Jin, W.; Chen, J. P.; Liu, B.; Hu, J. G.; Wu, Z. X.; Cai, W. Q.; Fu, G. T. Oxygen vacancy-rich in-doped CoO/CoP heterostructure as an effective air cathode for rechargeable Zn–air batteries. Small 2019, 15, 1904210.

[51]

Liu, X. F.; Tao, S.; Zhang, J. Z.; Zhu, Y.; Ma, R. L.; Lu, J. Ultrathin p–n type Cu2O/CuCoCr-layered double hydroxide heterojunction nanosheets for photo-assisted aqueous Zn-CO2 batteries. J. Mater. Chem. A 2021, 9, 26061–26068.

[52]

Shu, X. X.; Yang, M. M.; Tan, D. X.; Hui, K. S.; Hui, K. N.; Zhang, J. Recent advances in the field of carbon-based cathode electrocatalysts for Zn–air batteries. Mater. Adv. 2021, 2, 96–114.

[53]

Lee, J. S.; Tai Kim, S.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 2011, 1, 34–50.

[54]

Fu, G. T.; Tang, Y. W.; Lee, J. M. Recent advances in carbon-based bifunctional oxygen electrocatalysts for Zn–air batteries. ChemElectroChem 2018, 5, 1424–1434.

[55]

Ma, N. G.; Li, N.; Wang, T. R.; Ma, X. Y.; Fan, J. Strain engineering in the oxygen reduction reaction and oxygen evolution reaction catalyzed by Pt-doped Ti2CF2. J. Mater. Chem. A 2022, 10, 1390–1401.

[56]

Tao, H. B.; Zhang, J. M.; Chen, J. Z.; Zhang, L. P.; Xu, Y. H.; Chen, J. G.; Liu, B. Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. J. Am. Chem. Soc. 2019, 141, 13803–13811.

[57]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[58]

Huang, Z. F.; Song, J. J.; Dou, S.; Li, X. G.; Wang, J.; Wang, X. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 2019, 1, 1494–1518.

[59]

Li, Y. G.; Dai, H. J. Recent advances in zinc–air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

[60]

Liang, Y. Y.; Lei, H.; Wang, S. J.; Wang, Z. L.; Mai, W. Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn–air batteries. Sci. China Mater. 2021, 64, 1868–1875.

[61]

Yu, L.; Yi, Q. F.; Yang, X. K.; Chen, Y. An easy synthesis of Ni-Co doped hollow C-N tubular nanocomposites as excellent cathodic catalysts of alkaline and neutral zinc–air batteries. Sci. China Mater. 2019, 62, 1251–1264.

[62]

Luo, X.; Yang, M.; Song, W. Y.; Fang, Q.; Wei, X. Q.; Jiao, L.; Xu, W. Q.; Kang, Y. K.; Wang, H. J.; Wu, N. N. et al. Neutral Zn–air battery assembled with single-atom iridium catalysts for sensitive self-powered sensing system. Adv. Funct. Mater. 2021, 31, 2101193.

[63]

Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244.

[64]
MalkoD.KucernakA.LopesT. In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalystsNat. Commun.201671328510.1038/ncomms13285

Malko, D.; Kucernak, A.; Lopes, T. In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalysts. Nat. Commun. 2016, 7, 13285.

[65]

Artyushkova, K.; Serov, A.; Rojas-Carbonell, S.; Atanassov, P. Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal-nitrogen-carbon electrocatalysts. J. Phys. Chem. C 2015, 119, 25917–25928.

[66]

Urbain, F.; Tang, P. Y.; Carretero, N. M.; Andreu, T.; Gerling, L. G.; Voz, C.; Arbiol, J.; Morante, J. R. A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics. Energy Environ. Sci. 2017, 10, 2256–2266.

[67]

Wang, X. Y.; Xie, J. F.; Arsalan Ghausi, M.; Lv, J. Q.; Huang, Y. Y.; Wu, M. X.; Wang, Y. B.; Yao, J. N. Rechargeable Zn-CO2 electrochemical cells mimicking two-step photosynthesis. Adv. Mater. 2019, 31, 1807807.

[68]

Gao, S. S.; Jin, M. M.; Sun, J. Q.; Liu, X. J.; Zhang, S. S.; Li, H. Y.; Luo, J.; Sun, X. P. Coralloid Au enables high-performance Zn-CO2 battery and self-driven CO production. J. Mater. Chem. A 2021, 9, 21024–21031.

[69]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

[70]

Yang, M. S.; Sun, J. Q.; Qin, Y. J.; Yang, H.; Zhang, S. S.; Liu, X. J.; Luo, J. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Sci. China Mater. 2022, 65, 536–542.

[71]

Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

[72]

Zu, X. L.; Li, X. D.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Yao, T.; Yan, W. S.; Gao, S.; Wang, C. M.; Wei, S. Q. et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed SnΔ+ sites. Adv. Mater. 2019, 31, 1808135.

[73]

Chen, L.; Tang, C.; Zheng, Y.; Skúlason, E.; Jiao, Y. C3 production from CO2 reduction by concerted *CO trimerization on a single-atom alloy catalyst. J. Mater. Chem. A 2022, 10, 5998–6006.

[74]

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

[75]

Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

[76]

Fetrow, C. J.; Carugati, C.; Zhou, X. D.; Wei, S. Y. Electrochemistry of metal-CO2 batteries: Opportunities and challenges. Energy Storage Mater. 2022, 45, 911–933.

[77]

Ma, J. L.; Bao, D.; Shi, M. M.; Yan, J. M.; Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2017, 2, 525–532.

[78]

Xue, C.; Zhou, X. R.; Li, X. H.; Yang, N.; Xin, X.; Wang, Y. S.; Zhang, W. N.; Wu, J. S.; Liu, W. J.; Huo, F. W. Rational synthesis and regulation of hollow structural materials for electrocatalytic nitrogen reduction reaction. Adv. Sci. 2022, 9, 2104183.

[79]

Liu, D.; Chen, M. P.; Du, X. Y.; Ai, H. Q.; Lo, K. H.; Wang, S. P.; Chen, S.; Xing, G. C.; Wang, X. S.; Pan, H. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv. Funct. Mater. 2020, 31, 2008983.

[80]

Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180–2186.

[81]

Li, Z. R.; Ma, Z. Y.; Liang, J.; Ren, Y. C.; Li, T. S.; Xu, S. R.; Liu, Q.; Li, N.; Tang, B.; Liu, Y. et al. MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100586.

[82]

Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Kuai, C. G.; Guo, Y. Z. A feasible strategy for identifying single-atom catalysts toward electrochemical NO-to-NH3 conversion. Small 2021, 17, 2102396.

[83]

Liang, J.; Liu, Q.; Alshehri, A. A. Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

[84]

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

[85]

Ren, Z. B.; Zhang, H. N.; Wang, S. H.; Huang, B. B.; Dai, Y.; Wei, W. Nitric oxide reduction reaction for efficient ammonia synthesis on topological nodal-line semimetal Cu2Si monolayer. J. Mater. Chem. A 2022, 10, 8568–8577.

[86]

Wu, J.; Yu, Y. X. A theoretical descriptor for screening efficient NO reduction electrocatalysts from transition-metal atoms on N-doped BP monolayer. J. Colloid Interface Sci. 2022, 623, 432–444.

[87]

Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.

[88]

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

[89]

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

[90]

Ding, S. P.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.

[91]

Qin, R. X.; Liu, P. X.; Fu, G.; Zheng, N. F. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2018, 2, 1700286.

[92]

Liu, H. X.; Fu, J. T.; Li, H. Y.; Sun, J. Q.; Liu, X. J.; Qiu, Y.; Peng, X. Y.; Liu, Y. F.; Bao, H. H.; Zhuo, L. C. et al. Single palladium site in ordered porous heteroatom-doped carbon for high-performance alkaline hydrogen oxidation. Appl. Catal. B: -Environ. 2022, 306, 121029.

[93]

Han, L. L.; Hou, M. C.; Ou, P. F.; Cheng, H.; Ren, Z. H.; Liang, Z. X.; Boscoboinik, J. A.; Hunt, A.; Waluyo, I.; Zhang, S. S. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 2020, 11, 509–516.

[94]

Yang, M. S.; Liu, S.; Sun, J. Q.; Jin, M. M.; Fu, R.; Zhang, S. S.; Li, H. Y.; Sun, Z. Y.; Luo, J.; Liu, X. J. Highly dispersed Bi clusters for efficient rechargeable Zn-CO2 batteries. Appl. Catal. B: -Environ. 2022, 307, 121145.

[95]

Peng, X. Y.; Bao, H. H.; Sun, J. Q.; Mao, Z. Y.; Qiu, Y.; Mo, Z. J.; Zhuo, L. C.; Zhang, S. S.; Luo, J.; Liu, X. J. Heteroatom coordination induces electric field polarization of single Pt sites to promote hydrogen evolution activity. Nanoscale 2021, 13, 7134–7139.

[96]

Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

[97]

Shi, Y. C.; Chen, Y.; Shi, L.; Wang, K.; Wang, B.; Li, L.; Ma, Y. M.; Li, Y. H.; Sun, Z. H.; Ali, W. et al. An overview and future perspectives of rechargeable zinc batteries. Small 2020, 16, 2000730.

[98]

Duchesne, P. N.; Li, Z. Y.; Deming, C. P.; Fung, V.; Zhao, X. J.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S. W. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 2018, 17, 1033–1039.

[99]

Jin, M. M.; Liu, W.; Sun, J. Q.; Wang, X. Z.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Res. 2022, 15, 5842–5847.

[100]

Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Qiao, J. L.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

[101]

Peng, X. Y.; Mi, Y. Y.; Liu, X. J.; Sun, J. Q.; Qiu, Y.; Zhang, S. S.; Ke, X. X.; Wang, X. Z.; Luo, J. Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. J. Mater. Chem. A 2022, 10, 6134–6145.

[102]

Qi, D. F.; Liu, Y. F.; Hu, M.; Peng, X. Y.; Qiu, Y.; Zhang, S. S.; Liu, W. W.; Li, H. Y.; Hu, G. Z.; Zhuo, L. C. et al. Engineering atomic sites via adjacent dual-metal sub-nanoclusters for efficient oxygen reduction reaction and Zn–air battery. Small 2020, 16, 2004855.

[103]

Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

[104]

Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

[105]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-Level modulation of electronic density at cobalt single-atom sites derived from metal–organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[106]
Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy, in press, https://doi.org/10.1002/cey2.194.
[107]

Wang, Y.; Tang, Y. J.; Zhou, K. Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 14115–14119.

[108]

Wan, C. Z.; Duan, X. F.; Huang, Y. Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 1903815.

[109]

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

[110]

Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

[111]

Xiao, M. L.; Xing, Z. H.; Jin, Z.; Liu, C. P.; Ge, J. J.; Zhu, J. B.; Wang, Y.; Zhao, X.; Chen, Z. W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn–air batteries. Adv. Mater. 2020, 32, 2004900.

[112]

Xie, X. H.; He, C.; Li, B. Y.; He, Y. H.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y. W.; Engelhard, M. H. et al. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.

[113]

Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

[114]

Yan, L.; Xie, L. Y.; Wu, X. L.; Qian, M. Y.; Chen, J. R.; Zhong, Y. J.; Hu, Y. Precise regulation of pyrrole-type single-atom Mn-N4 sites for superior pH-universal oxygen reduction. Carbon Energy 2021, 3, 856–865.

[115]

Ma, S. H.; Han, Z.; Leng, K.; Liu, X. J.; Wang, Y.; Qu, Y. T.; Bai, J. B. Ionic exchange of metal–organic frameworks for constructing unsaturated copper single-atom catalysts for boosting oxygen reduction reaction. Small 2020, 16, 2001384.

[116]

Niu, W. J.; Sun, Q. Q.; He, J. Z.; Chen, J. L.; Gu, B. N.; Liu, M. J.; Chung, C. C.; Wu, Y. Z.; Chueh, Y. L. Zeolitic imidazolate framework-derived copper single atom anchored on nitrogen-doped porous carbon as a highly efficient electrocatalyst for the oxygen reduction reaction toward Zn–air battery. Chem. Mater. 2022, 34, 4104–4114.

[117]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[118]

Lin, L.; Ni, Y. X.; Shang, L.; Sun, H. X.; Zhang, Q.; Zhang, W.; Yan, Z. H.; Zhao, Q.; Chen, J. Atomic-level modulation-induced electron redistribution in Co coordination polymers elucidates the oxygen reduction mechanism. ACS Catal. 2022, 12, 7531–7540.

[119]

He, T.; Chen, Y.; Liu, Q. M.; Lu, B. Z.; Song, X. W.; Liu, H. T.; Liu, M.; Liu, Y. N.; Zhang, Y.; Ouyang, X. P. et al. Theory-guided regulation of FeN4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal–air batteries. Angew. Chem., Int. Ed. 2022, 61, e202201007.

[120]

Wu, Y. Y.; Ye, C. C.; Yu, L.; Liu, Y. F.; Huang, J. F.; Bi, J. B.; Xue, L.; Sun, J. W.; Yang, J.; Zhang, W. Q. et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn–air batteries. Energy Storage Mater. 2022, 45, 805–813.

[121]

Wang, D.; Xu, H.; Yang, P. X.; Lu, X. Y.; Ma, J. Y.; Li, R. P.; Xiao, L. H.; Zhang, J. Q.; An, M. Z. Fe-N4 and Co-N4 dual sites for boosting oxygen electroreduction in Zn–air batteries. J. Mater. Chem. A 2021, 9, 13678–13687.

[122]

Xu, J.; Lai, S.; Qi, D.; Hu, M.; Peng, X.; Liu, Y.; Liu, W.; Hu, G.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

[123]

Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

[124]

Zhu, M. Z.; Zhao, C.; Liu, X. K.; Wang, X. L.; Zhou, F. Y.; Wang, J.; Hu, Y. M.; Zhao, Y. F.; Yao, T.; Yang, L. M. et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal. 2021, 11, 3923–3929.

[125]

Jing, H. Y; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[126]

Zhu, X. F.; Tan, X.; Wu, K. H.; Haw, S. C.; Pao, C. W.; Su, B. J.; Jiang, J. J.; Smith, S. C.; Chen, J. M.; Amal, R. et al. Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning. Angew. Chem., Int. Ed. 2021, 60, 21911–21917.

[127]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[128]

Yin, S. H.; Yang, J.; Han, Y.; Li, G.; Wan, L. Y.; Chen, Y. H.; Chen, C.; Qu, X. M.; Jiang, Y. X.; Sun, S. G. Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 21976–21979.

[129]

Zhang, Q. R.; Kumar, P.; Zhu, X. F.; Daiyan, R.; Bedford, N. M.; Wu, K. H.; Han, Z. J.; Zhang, T. R.; Amal, R.; Lu, X. Y. Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv. Energy Mater. 2021, 11, 2100303.

[130]

Ni, W. P.; Liu, Z. X.; Zhang, Y.; Ma, C.; Deng, H. Q.; Zhang, S. G.; Wang, S. Y. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 2021, 33, 2003238.

[131]

Zheng, W. Z.; Chen, F.; Zeng, Q.; Li, Z. J.; Yang, B.; Lei, L. C.; Zhang, Q. H.; He, F.; Wu, X. L.; Hou, Y. A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nano-Micro Lett. 2020, 12, 108.

[132]

Liu, S.; Jin, M. M.; Sun, J. Q.; Qin, Y. J.; Gao, S. S.; Chen, Y.; Zhang, S. S.; Luo, J.; Liu, X. J. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst. Chem. Eng. J. 2022, 437, 135294.

[133]

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

[134]

Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J. et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

[135]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[136]

Chen, J. Y.; Li, Z. J.; Wang, X. Y.; Sang, X. H.; Zheng, S. X.; Liu, S. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Dai, L. M. et al. Promoting CO2 electroreduction kinetics on atomically dispersed monovalent ZnI sites by rationally engineering proton-feeding centers. Angew. Chem., Int. Ed. 2022, 61, e202111683.

[137]

Zeng, Z. P.; Gan, L. Y.; Bin Yang, H.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

[138]

Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

[139]

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

[140]

Gu, Y.; Xi, B. J.; Tian, W. Z.; Zhang, H.; Fu, Q.; Xiong, S. L. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv. Mater. 2021, 33, 2100429.

[141]

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

[142]

Liu, C. W.; Li, Q. Y.; Wu, C. Z.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019, 141, 2884–2888.

[143]

Lv, P.; Wu, D. H.; He, B. L.; Li, X.; Zhu, R.; Tang, G.; Lu, Z. S.; Ma, D. W.; Jia, Y. An efficient screening strategy towards multifunctional catalysts for the simultaneous electroreduction of NO3, NO2 and NO to NH3. J. Mater. Chem. A 2022, 10, 9707–9716.

[144]

Sun, P. F.; Wang, W. L.; Zhao, X.; Dang, J. S. Defective h-BN sheet embedded atomic metals as highly active and selective electrocatalysts for NH3 fabrication via NO reduction. Phys. Chem. Chem. Phys. 2020, 22, 22627–22634.

[145]

Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Liu, Y. F.; Qi, D. F.; Qiu, Y.; Zhuo, L. C.; Zhao, S.; Sun, J. Q.; Tang, X. L. et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 2020, 78, 105321.

[146]

Tian, L.; Li, Z.; Xu, X. N.; Zhang, C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470.

[147]

Lv, X. W.; Xu, W. S.; Tian, W. W.; Wang, H. Y.; Yuan, Z. Y. Activity promotion of core and shell in multifunctional core–shell Co2P@NC electrocatalyst by secondary metal doping for water electrolysis and Zn–air batteries. Small 2021, 17, 2101856.

[148]

Gan, Y. H.; Cui, M. L.; Dai, X. P.; Ye, Y.; Nie, F.; Ren, Z. T.; Yin, X. L.; Wu, B. Q.; Cao, Y. H.; Cai, R. et al. Mn-doping induced electronic modulation and rich oxygen vacancies on vertically grown NiFe2O4 nanosheet array for synergistically triggering oxygen evolution reaction. Nano Res. 2022, 15, 3940–3945.

[149]

Hao, A.; Wan, X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Inorganic microporous membranes for hydrogen separation: Challenges and solutions. Nano Res. Energy 2022, 1, e9120013.

[150]

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

[151]

Zhang, H.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution. Ionics 2022, 28, 3927–3934.

[152]

Balaghi, S. E.; Triana, C. A.; Patzke, G. R. Molybdenum-doped manganese oxide as a highly efficient and economical water oxidation catalyst. ACS Catal. 2020, 10, 2074–2087.

[153]

Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Yang, Y.; Luo, M. C.; Huang, Y. R.; Sun, Y. J.; Chao, Y. G.; Yang, W. X.; Yang, W. W. et al. Lavender-like ga-doped Pt3Co nanowires for highly stable and active electrocatalysis. ACS Catal. 2020, 10, 3018–3026.

[154]

Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844.

[155]

Zhou, Y.; Sun, S. N.; Song, J. J.; Xi, S. B.; Chen, B.; Du, Y. H.; Fisher, A. C.; Cheng, F. Y.; Wang, X.; Zhang, H. et al. Enlarged Co–O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 2018, 30, 1802912.

[156]

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

[157]

Rao, Y.; Chen, S.; Yue, Q.; Kang, Y. J. Optimizing the spin states of mesoporous Co3O4 nanorods through vanadium doping for long-lasting and flexible rechargeable Zn–air batteries. ACS Catal. 2021, 11, 8097–8103.

[158]

Jin, H. Y.; Liu, X.; Chen, S. M.; Vasileff, A.; Li, L. Q.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S. Z. Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Lett. 2019, 4, 805–810.

[159]

Ran, J.; Wang, T.; Zhang, J.; Liu, Y.; Xu, C.; Xi, S.; Gao, D. Modulation of electronics of oxide perovskites by sulfur doping for electrocatalysis in rechargeable Zn–air batteries. Chem. Mater. 2020, 32, 3439–3446.

[160]

Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.

[161]

Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, Y. Q.; Dai, L. M.; Zhang, J. T. Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn–air batteries. Nano Energy 2019, 60, 536–544.

[162]

Hu, C. G.; Dai, L. M. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672.

[163]

Ren, Q.; Wang, H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv. Sci. 2018, 5, 1700515.

[164]

Arafat, Y.; Azhar, M. R.; Zhong, Y. J.; Tadé, M. O.; Shao, Z. P. Metal-free carbon based air electrodes for Zn–air batteries: Recent advances and perspective. Mater. Res. Bull. 2021, 140, 111315.

[165]

Gao, K.; Wang, B.; Tao, L.; Cunning, B. V.; Zhang, Z. P.; Wang, S. Y.; Ruoff, R. S.; Qu, L. T. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and Co-doping. Adv. Mater. 2019, 31, 1805121.

[166]

Yang, H. B.; Miao, J.; Hung, S.-F.; Chen, J.; Tao, H. B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, 1501122.

[167]

Van Tam, T.; Kang, S. G.; Kim, M. H.; Lee, S. G.; Hur, S. H.; Chung, J. S.; Choi, W. M. Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn–air batteries and overall water splitting. Adv. Energy Mater. 2019, 9, 1900945.

[168]

Wei, P.; Li, X. G.; He, Z. M.; Sun, X. P.; Liang, Q. R.; Wang, Z. Y.; Fang, C.; Li, Q.; Yang, H.; Han, J. et al. Porous N, B Co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn–air batteries. Chem. Eng. J. 2021, 422, 130134.

[169]

Guo, Y. B.; Yao, S.; Gao, L. X.; Chen, A.; Jiao, M. G.; Cui, H. J.; Zhou, Z. Boosting bifunctional electrocatalytic activity in S and N Co-doped carbon nanosheets for high-efficiency Zn–air batteries. J. Mater. Chem. A 2020, 8, 4386–4395.

[170]

Wang, Y. X.; Xu, N. N.; He, R. N.; Peng, L. W.; Cai, D. Q.; Qiao, J. L. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn–air battery. Appl. Catal. B: -Environ. 2021, 285, 119811.

[171]

Yang, W. X.; Zhang, Y. L.; Liu, X. J.; Chen, L. L.; Liu, M. C.; Jia, J. B. Polymerization–dissolution strategy to prepare Fe, N, S tri-doped carbon nanostructures for Zn–air batteries. Carbon 2019, 147, 83–89.

[172]

Zhao, Z. H.; Xia, Z. H. Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions. ACS Catal. 2016, 6, 1553–1558.

[173]

Liu, T. F.; Ali, S.; Lian, Z.; Si, C. W.; Su, D. S.; Li, B. Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: The decisive role of the bonding configuration of phosphorus. J. Mater. Chem. A 2018, 6, 19998–20004.

[174]

Chen, S. Y.; Li, X. Q.; Kao, C. W.; Luo, T.; Chen, K. J.; Fu, J. W.; Ma, C.; Li, H. M.; Li, M.; Chan, T. S. et al. Unveiling the proton-feeding effect in sulfur-doped Fe-N-C single-atom catalyst for enhanced CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202206233.

[175]

Chen, C. J.; Sun, X. F.; Yan, X. P.; Wu, Y. H.; Liu, H. Z.; Zhu, Q. G.; Bediako, B. B. A.; Han, B. X. Boosting CO2 electroreduction on N, P-co-doped carbon aerogels. Angew. Chem., Int. Ed. 2020, 59, 11123–11129.

[176]

Yang, H. P.; Wu, Y.; Lin, Q.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X.; Lin, Z. Q. Composition tailoring via N and S Co-doping and structure tuning by constructing hierarchical pores: Metal-free catalysts for high-performance electrochemical reduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 15476–15480.

[177]

Zhao, Y. F.; Pei, Z. H.; Lu, X. F.; Luan, D. Y.; Wang, X.; Lou, X. W. Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn-CO2 batteries. Chem Catal. 2022, 2, 1480–1493.

[178]

Ai, C. Z.; Vegge, T.; Hansen, H. A. Metal-doped PdH (111) catalysts for CO2 reduction. ChemSusChem 2022, 15, e202200008.

[179]
Bai, X. W.; Shi, L.; Li, Q.; Ling, C. Y.; Ouyang, Y. X.; Wang, S. Y.; Wang, J. L. Synergistic effect of metal doping and tethered ligand promoted high-selectivity conversion of CO2 to C2 oxygenates at ultra-low potential. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12203.
[180]

Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small Methods 2019, 3, 1900356.

[181]

Guo, J. J.; Tadesse Tsega, T.; Ul Islam, I.; Iqbal, A.; Zai, J. T.; Qian, X. F. Fe doping promoted electrocatalytic N2 reduction reaction of 2H MoS2. Chin. Chem. Lett. 2020, 31, 2487–2490.

[182]

Wang, T.; Xia, L.; Yang, J. J.; Wang, H. B.; Fang, W. H.; Chen, H. Y.; Tang, D. P.; Asiri, A. M.; Luo, Y. L.; Cui, G. L. et al. Electrocatalytic N2-to-NH3 conversion using oxygen-doped graphene: Experimental and theoretical studies. Chem. Commun. 2019, 55, 7502–7505.

[183]

Wu, T. T.; Li, P. P.; Wang, H. B.; Zhao, R. B.; Zhou, Q.; Kong, W. H.; Liu, M. L.; Zhang, Y. Y.; Sun, X. P.; Gong, F. Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N2-to-NH3 fixation under ambient conditions. Chem. Commun. 2019, 55, 2684–2687.

[184]

Mukherjee, S.; Cullen, D. A.; Karakalos, S.; Liu, K. X.; Zhang, H.; Zhao, S.; Xu, H.; More, K. L.; Wang, G. F.; Wu, G. Metal–organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 2018, 48, 217–226.

[185]

Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

[186]

Zhang, L. C.; Zhou, Q.; Liang, J.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Gong, F. et al. Enhancing electrocatalytic NO reduction to NH3 by the CoS nanosheet with sulfur vacancies. Inorg. Chem. 2022, 61, 8096–8102.

[187]

Wu, Q.; Wang, H.; Shen, S. Y.; Huang, B. B.; Dai, Y.; Ma, Y. D. Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst. J. Mater. Chem. A 2021, 9, 5434–5441.

[188]

Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable zinc–air batteries. Adv. Energy Mater. 2021, 11, 2002762.

[189]

Pei, Z. X.; Ding, L. Y.; Wang, C.; Meng, Q. Q.; Yuan, Z. W.; Zhou, Z.; Zhao, S. L.; Chen, Y. Make it stereoscopic: Interfacial design for full-temperature adaptive flexible zinc–air batteries. Energy Environ. Sci. 2021, 14, 4926–4935.

[190]

Wang, X. Y.; He, Y.; Han, X. P.; Zhao, J.; Li, L. L.; Zhang, J. F.; Zhong, C.; Deng, Y. D.; Hu, W. B. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res. 2022, 15, 1246–1253.

[191]

Xiao, Y.; Shen, C. Transition-metal borides (MBenes) as new high-efficiency catalysts for nitric oxide electroreduction to ammonia by a high-throughput approach. Small 2021, 17, 2100776.

[192]

Liu, S.; Wang, L.; Yang, H.; Gao, S. S.; Liu, Y. F.; Zhang, S. S.; Chen, Y.; Liu, X. J.; Luo, J. Nitrogen-doped carbon polyhedrons confined Fe-P nanocrystals as high-efficiency bifunctional catalysts for aqueous Zn-CO2 batteries. Small 2022, 18, 2104965.

[193]

Quan, Q.; Zhang, Y. X.; Wang, F.; Bu, X. M.; Wang, W.; Meng, Y.; Xie, P. S.; Chen, D.; Wang, W. J.; Li, D. J. et al. Topochemical domain engineering to construct 2D mosaic heterostructure with internal electric field for high-performance overall water splitting. Nano Energy 2022, 101, 107566.

[194]

Pan, S. Y.; Yu, X. X.; Ling, Y.; Yang, Z. H. Stable and efficient hydrogen evolution reaction catalyzed by NiO-Rh2P heterostructure electrocatalyst. Catal. Commun. 2022, 163, 106404.

[195]

Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 2020, 32, 2000872.

[196]

Wang, X. K.; Zhan, G. M.; Wang, Y. R.; Zhang, Y.; Zhou, J.; Xu, R.; Gai, H. Y.; Wang, H. L.; Jiang, H. Q.; Huang, M. H. Engineering core–shell Co9S8/Co nanoparticles on reduced graphene oxide: Efficient bifunctional Mott–Schottky electrocatalysts in neutral rechargeable Zn–air batteries. J. Energy Chem. 2022, 68, 113–123.

[197]

Lu, Q.; Zou, X. H.; Bu, Y. F.; Liao, K. M.; Zhou, W.; Shao, Z. P. A controllable dual interface engineering concept for rational design of efficient bifunctional electrocatalyst for zinc–air batteries. Small 2022, 18, 2105604.

[198]

An, L.; Zhang, Z. Y.; Feng, J. R.; Lv, F.; Li, Y. X.; Wang, R.; Lu, M.; Gupta, R. B.; Xi, P. X.; Zhang, S. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc–air battery with neutral aqueous electrolyte. J. Am. Chem. Soc. 2018, 140, 17624–17631.

[199]

Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, 1905679.

[200]

Song, J. N.; Chen, Y.; Huang, H. J.; Wang, J. J.; Huang, S. C.; Liao, Y. F.; Fetohi, A. E.; Hu, F.; Chen, H. Y.; Li, L. L. et al. Heterointerface engineering of hierarchically assembling layered double hydroxides on cobalt selenide as efficient trifunctional electrocatalysts for water splitting and zinc–air battery. Adv. Sci. 2022, 9, 2104522.

[201]

Li, M.; Pan, X. C.; Jiang, M. Q.; Zhang, Y. F.; Tang, Y. W.; Fu, G. T. Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chem. Eng. J. 2020, 395, 125160.

[202]

Zhang, Y. N.; Shi, W. P.; Bo, L. L.; Shen, Y. X.; Ji, X. C.; Xia, L. C.; Guan, X. L.; Wang, Y. X.; Tong, J. H. Electrospinning construction of heterostructural Co3W3C/CoP nanoparticles embedded in N, P-doped hierarchically porous carbon fibers as excellent multifunctional electrocatalyst for Zn–air batteries and water splitting. Chem. Eng. J. 2022, 431, 134188.

[203]

Sun, Z. H.; Wang, Y. K.; Zhang, L. B.; Wu, H.; Jin, Y. C.; Li, Y. H.; Shi, Y. C.; Zhu, T. X.; Mao, H.; Liu, J. M. et al. Simultaneously realizing rapid electron transfer and mass transport in Jellyfish-like Mott–Schottky nanoreactors for oxygen reduction reaction. Adv. Funct. Mater. 2020, 30, 1910482.

[204]

Yan, S.; Peng, C.; Yang, C.; Chen, Y. S.; Zhang, J. B.; Guan, A. X.; Lv, X. M.; Wang, H. Z.; Wang, Z. Q.; Sham, T. K. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem., Int. Ed. 2021, 60, 25741–25745.

[205]

Yang, H.; Wang, B.; Kou, S.; Lu, G.; Liu, Z. Mott–Schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc–air battery. Chem. Eng. J. 2021, 425, 131589.

[206]

Wang, N.; Ning, S. L.; Yu, X. L.; Chen, D.; Li, Z. L.; Xu, J. C.; Meng, H.; Zhao, D. K.; Li, L. G.; Liu, Q. M. et al. Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc–air batteries. Appl. Catal. B: -Environ. 2022, 302, 120838.

[207]
Niu, Y. L.; Gong, S. Q.; Liu, X.; Xu, C.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn–air batteries. eScience, in press, https://doi.org/10.1016/j.esci.2022.05.001.
[208]

Liu, W. X.; Yu, L. H.; Yin, R. L.; Xu, X. L.; Feng, J. X.; Jiang, X.; Zheng, D.; Gao, X. L.; Gao, X. B.; Que, W. B. et al. Non-3d metal modulation of a 2D Ni-Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting. Small 2020, 16, 1906775.

[209]

Ma, D. D.; Han, S. G.; Cao, C. S.; Wei, W. B.; Li, X. F.; Chen, B.; Wu, X. T.; Zhu, Q. L. Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization. Energy Environ. Sci. 2021, 14, 1544–1552.

[210]
Han, S. G.; Zhang, M.; Fu, Z. H.; Zheng, L. R.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. Enzyme-inspired microenvironment engineering of a single-molecular heterojunction for promoting concerted electrochemical CO2 reduction. Adv. Mater., in press, https://doi.org/10.1002/adma.202202830.
[211]

Wang, X. J.; Luo, M.; Lan, J.; Peng, M.; Tan, Y. W. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction. Adv. Mater. 2021, 33, 2007733.

[212]

Liu, Y.; Zhu, X. R.; Zhang, Q. H.; Tang, T.; Zhang, Y.; Gu, L.; Li, Y. F.; Bao, J. C.; Dai, Z. H.; Hu, J. S. Engineering Mo/Mo2C/MoC hetero-interfaces for enhanced electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 8920–8926.

[213]

Hu, X. L.; Yang, T. X.; Yang, Z. G.; Li, Z. Y.; Wang, R. H.; Li, M.; Huang, G. S.; Jiang, B.; Xu, C. H.; Pan, F. S. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc–air battery and self-powered overall water splitting. J. Mater. Sci. Technol. 2022, 115, 19–28.

[214]

Arif, M.; Yasin, G.; Luo, L.; Ye, W.; Mushtaq, M. A.; Fang, X. Y.; Xiang, X.; Ji, S. F.; Yan, D. P. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Appl. Catal. B: -Environ. 2020, 265, 118559.

[215]

Liu, Y. T.; Chen, X. X.; Yu, J. Y.; Ding, B. Carbon-nanoplated CoS@TiO2 nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 18903–18907.

[216]

Meng, G.; Wei, T. R.; Liu, W. J.; Li, W. B.; Zhang, S. S.; Liu, W. X.; Liu, Q.; Bao, H. H.; Luo, J.; Liu, X. J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun. 2022, 58, 8097–8100.

[217]

Feng, J. X.; Zheng, D.; Gao, X. L.; Que, W. B.; Shi, W. H.; Liu, W. X.; Wu, F. F.; Cao, X. H. Three-dimensional ordered porous carbon for energy conversion and storage applications. Front. Energy Res. 2020, 8, 210.

[218]

Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal–organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

[219]

Liu, W. X.; Feng, J. X.; Yin, R. L.; Ni, Y. F.; Zheng, D.; Que, W. B.; Niu, X. X.; Dai, X. J.; Shi, W. H.; Wu, F. F. et al. Tailoring oxygenated groups of monolithic cobalt-nitrogen-carbon frameworks for highly efficient hydrogen peroxide production in acidic media. Chem. Eng. J. 2022, 430, 132990.

[220]

Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.

[221]

Lee, D. U.; Choi, J. Y.; Feng, K.; Park, H. W.; Chen, Z. W. Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc–air batteries. Adv. Energy Mater. 2014, 4, 1301389.

[222]

Song, J. N.; Yu, D. S.; Wu, X. L.; Xie, D. Y.; Sun, Y.; Vishniakov, P.; Hu, F.; Li, L. L.; Li, C. S.; Yu. Maximov, M. Y. et al. Interfacial coupling porous cobalt nitride nanosheets array with N-doped carbon as robust trifunctional electrocatalysts for water splitting and Zn–air battery. Chem. Eng. J. 2022, 437, 135281.

[223]

Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc–air batteries. Adv. Mater. 2019, 31, 1808267.

[224]

Liu, W. X.; Zheng, D.; Zhang, L.; Yin, R. L.; Xu, X. L.; Shi, W. H.; Wu, F. F.; Cao, X. H.; Lu, X. H. Bioinspired interfacial engineering of a CoSe2 decorated carbon framework cathode towards temperature-tolerant and flexible Zn–air batteries. Nanoscale 2021, 13, 3019–3026.

[225]

Wu, K. Z.; Zhang, L.; Yuan, Y. F.; Zhong, L. X.; Chen, Z. X.; Chi, X.; Lu, H.; Chen, Z. H.; Zou, R.; Li, T. Z. et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn–air batteries. Adv. Mater. 2020, 32, 2002292.

[226]

Yang, L. P.; Zhang, X.; Yu, L. X.; Hou, J. H.; Zhou, Z.; Lv, R. T. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn–air batteries with stable cycling over 1000 h. Adv. Mater. 2022, 34, 2105410.

[227]

Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.

[228]

Chen, Y.; Mei, Y. X.; Li, M. L.; Dang, C. Y.; Huang, L.; Wu, W. G.; Wu, Y. Y.; Yu, X. H.; Wang, K.; Gu, L. et al. Highly selective CO2 conversion to methane or syngas tuned by CNTs@non-noble-metal cathodes in Zn-CO2 flow batteries. Green Chem. 2021, 23, 8138–8146.

[229]

Li, W. Y.; Wu, T. X.; Zhang, S. B.; Liu, Y. Y.; Zhao, C. J.; Liu, G. Q.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions. Chem. Commun. 2018, 54, 11188–11191.

[230]

Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.

[231]

Tang, K.; Hu, H.; Xiong, Y.; Chen, L.; Zhang, J.; Yuan, C.; Wu, M. Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc–air batteries. Angew Chem., Int. Ed. 2022, 61, 202202671.

[232]

Niu, L. J.; Liu, Z. W.; Liu, G. H.; Li, M. X.; Zong, X. P.; Wang, D. D.; An, L.; Qu, D.; Sun, X. M.; Wang, X. Y. et al. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Res. 2022, 15, 3886–3893.

[233]

Zhong, Y.; Xu, Y.; Ma, J.; Wang, C.; Sheng, S. Y.; Cheng, C. T.; Li, M. X.; Han, L.; Zhou, L. L.; Cai, Z. et al. An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self-assembly. Angew. Chem., Int. Ed. 2020, 59, 19095–19101.

[234]

Du, C.; Qiu, C. L.; Fang, Z. Y.; Li, P.; Gao, Y. J.; Wang, J. G.; Chen, W. Interface hydrophobic tunnel engineering: A general strategy to boost electrochemical conversion of N2 to NH3. Nano Energy 2022, 92, 106784.

[235]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[236]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res, 2022, 15, 1730–1752.

[237]

Zhang, F. Y.; Xie, K. Porous iron- and cobalt-based single crystals with enhanced electrocatalysis performance. Chin. J. Struct. Chem. 2021, 40, 61–69.

[238]

Liu, T. C.; Pan, F.; Amine, K. Prospect and reality of concentration gradient cathode of lithium-ion batteries. Chin. J. Struct. Chem. 2020, 39, 11–15.

[239]
Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022,  in press, https://doi.org/10.26599/NRE.2022.9120027.
[240]

Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Research progress of hydrogen oxidation and hydrogen evolution reaction mechanism in alkaline media. Acta Phys. Chim. Sin. 2021, 37, 2007054.

[241]

Wang, Y. H.; Jiang, W. J.; Yao, W.; Liu, Z. L.; Liu, Z.; Yang, Y.; Gao, L. Z. Advances in electrochemical reduction of carbon dioxide to formate over bismuth-based catalysts. Rare Metals 2021, 40, 2327–2353.

[242]

Wei, Z. X.; Zhu, Y. T.; Liu, J. Y.; Zhang, Z. C.; Hu, W. P.; Xu, H.; Feng, Y. Z.; Ma, J. M. Recent advance in single-atom catalysis. Rare Metals 2021, 40, 767–789.

[243]

Wang, J. J.; Li, X. P.; Cui, B. F.; Zhang, Z.; Hu, X. F.; Ding, J.; Deng, Y. D.; Han, X. P.; Hu, W. B. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Metals 2021, 40, 3019–3037.

[244]
Gao, S.; Wei, T.; Sun, J.; Liu, Q.; Ma, D.; Liu, W.; Zhang, S.; Luo, J.; Liu, X. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Struct., in press, https://doi.org/10.1002/sstr.202200086.
[245]

Ge, S. M.; Zhang, L. W.; Hou, J. R.; Liu, S.; Qin, Y. J.; Liu, Q.; Cai, X. B.; Sun, Z. Y.; Yang, M. S.; Luo, J. et al. Cu2O-Derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487–9494.

[246]

Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

[247]

Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhao, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc–iodine batteries. Nano Res. Energy 2022, 1, e9120025.

[248]

Chu, L.; Zhai, S. B.; Ahmad, W.; Zhang, J.; Zang, Y.; Yan, W. S.; Li, Y. F. High-performance large-area perovskite photovoltaic modules. Nano Res. Energy 2022, 1, e9120024.

[249]

Hou, J. R.; Peng, X. Y.; Sun, J. Q.; Zhang, S. S.; Liu, Q.; Wang, X. Z.; Luo, J.; Li, X. J. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays. Inorg. Chem. Front. 2022, 9, 3047–3058.

[250]

Yang, M. S.; Liu, Y. F.; Sun, J. Q.; Zhang, S. S.; Liu, X. J.; Luo, J. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn–air battery. Sci. China Mater. 2022, 65, 1176–1186.

[251]

Han, L. L.; Ren, Z. H.; Ou, P. F.; Cheng, H.; Rui, N.; Lin, L. L.; Liu, X. J.; Zhuo, L. C.; Song, J.; Sun, J. Q. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem., Int. Ed. 2021, 60, 345–350.

[252]

Huang, W.; Zhou, D. J.; Lee, J.; Sun, J. Q.; Zhang, S. S.; Xu, H.; Luo, J.; Liu, X. J. Ag-decorated GaN for high-efficiency photoreduction of carbon dioxide into tunable syngas under visible light. Nanotechnology 2021, 32, 505722.

Nano Research
Pages 2325-2346
Cite this article:
Liu W, Feng J, Wei T, et al. Active-site and interface engineering of cathode materials for aqueous Zn–gas batteries. Nano Research, 2023, 16(2): 2325-2346. https://doi.org/10.1007/s12274-022-4929-7
Topics:

1638

Views

73

Crossref

45

Web of Science

72

Scopus

3

CSCD

Altmetrics

Received: 26 July 2022
Revised: 15 August 2022
Accepted: 16 August 2022
Published: 27 September 2022
© Tsinghua University Press 2022
Return