AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosting the cycling stability of rechargeable magnesium batteries by regulating the compatibility between nanostructural metal sulfide cathodes and non-nucleophilic electrolytes

Xiaolan Xue1,2,§Xinmei Song1,4,5,§Anyang Tao1,4,5Wen Yan1Xiao Li Zhang3Zuoxiu Tie1,4,5Zhong Jin1,4,5( )
Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Suzhou Tierui New Energy Technology Co. Ltd., Suzhou 215228, China
Nanjing Tieming Energy Technology Co. Ltd., Nanjing 210093, China

§ Xiaolan Xue and Xinmei Song contributed equally to this work.

Show Author Information

Graphical Abstract

We report the application of CuS nanoflower cathode material based on the conversion reaction mechanism for highly reversible magnesium batteries with boosted electrochemical performances by adjusting the compatibility between the cathode and electrolyte.

Abstract

Rechargeable magnesium batteries are attractive candidates for energy storage due to their high theoretical specific capacities, free of dendrite formation and natural abundance of magnesium. However, the development of magnesium secondary batteries is severely limited by the lack of high-performance cathode materials and the incompatibility of electrode materials with electrolytes. Herein, we report the application of CuS nanoflower cathode material based on the conversion reaction mechanism for highly reversible magnesium batteries with boosted electrochemical performances by adjusting the compatibility between the cathode and electrolyte. By applying non-nucleophilic electrolytes based on magnesium bis(hexamethyldisilazide) and magnesium chloride dissolved in the mixed solvent of tetrahydrofuran and N-butyl-N-methyl-piperidinium bis((trifluoromethyl)sulfonyl)imide (Mg(HMDS)2-MgCl2/THF-PP14TFSI) or magnesium bis(trifluoromethanesulfonyl)imide, magnesium chloride and aluminium chloride dissolved in dimethoxyethane (Mg(TFSI)2-MgCl2-AlCl3/DME), the magnesium batteries with CuS nanoflower cathode exhibit a high discharge capacity of ~207 mAh·g–1 at 100 mA·g–1 and a long life span of 1,000 cycles at 500 mA·g–1. This work suggests that the rational regulation of compatibility between electrode and electrolyte plays a very important role in improving the performance of multi-valent ion secondary batteries.

Electronic Supplementary Material

Download File(s)
12274_2022_4932_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

[2]

Wang, F. X.; Wu, X. W.; Li, C. Y.; Zhu, Y. S.; Fu, L. J.; Wu, Y. P.; Liu, X. Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ. Sci. 2016, 9, 3570–3611.

[3]

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 2018, 28, 1802938.

[4]

Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 2014, 114, 11683–11720.

[5]

Li, L.; Lu, Y.; Zhang, Q.; Zhao, S.; Hu, Z.; Chou, S. L. Recent progress on layered cathode materials for nonaqueous rechargeable magnesium batteries. Small 2021, 17, 1902767.

[6]

Mao, M. L.; Gao, T.; Hou, S.; Wang, C. S. A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 2018, 47, 8804–8841.

[7]
Zhang, R. G.; Yu, X. Q.; Nam, K. W.; Ling, C.; Arthur, T. S.; Song, W.; Knapp, A. M.; Ehrlich, S. N.; Yang, X. Q.; Matsui, M. α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 2012, 23, 110–113.
[8]

Wang, L.; Asheim, K.; Vullum, P. E.; Svensson, A. M.; Vullum-Bruer, F. Sponge-like porous manganese (II, III) oxide as a highly efficient cathode material for rechargeable magnesium ion batteries. Chem. Mater. 2016, 28, 6459–6470.

[9]

Yu, L.; Zhang, X. G. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. J. Colloid Interface Sci. 2004, 278, 160–165.

[10]

Liang, Y. L.; Feng, R. J.; Yang, S. Q.; Ma, H.; Liang, J.; Chen, J. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 2011, 23, 640–643.

[11]

Yoo, H. D.; Liang, Y. L.; Dong, H.; Lin, J. H.; Wang, H.; Liu, Y. S.; Ma, L.; Wu, T. P.; Li, Y. F.; Ru, Q. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 2017, 8, 339.

[12]

Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724–727.

[13]

Liang, K.; Marcus, K.; Guo, L.; Li, Z.; Zhou, L.; Li, Y.; De Oliveira, S. T.; Orlovskaya, N.; Sohn, Y. H.; Yang, Y. A freestanding NiS porous film as a binder-free electrode for Mg-ion batteries. Chem. Commun. 2017, 53, 7608–7611.

[14]

He, D.; Wu, D. N.; Gao, J.; Wu, X. M.; Zeng, X. Q.; Ding, W. J. Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries. J. Power Sources 2015, 294, 643–649.

[15]

Liu, B.; Luo, T.; Mu, G. Y.; Wang, X. F.; Chen, D.; Shen, G. Z. Rechargeable Mg-ion batteries based on wse2 nanowire cathodes. ACS Nano 2013, 7, 8051–8058.

[16]

Tashiro, Y.; Taniguchi, K.; Miyasaka, H. Copper selenide as a new cathode material based on displacement reaction for rechargeable magnesium batteries. Electrochim. Acta 2016, 210, 655–661.

[17]

Ha, J. H.; Lee, B.; Kim, J. H.; Cho, B. W.; Kim, S. O.; Oh, S. H. Silver chalcogenides (Ag2X, X= S, Se) nanoparticles embedded in carbon matrix for facile magnesium storage via conversion chemistry. Energy Storage Mater. 2020, 27, 459–465.

[18]

Truong, Q. D.; Devaraju, M. K.; Honma, I. Nanocrystalline MgMnSiO4 and MgCoSiO4 particles for rechargeable Mg-ion batteries. J. Power Sources 2017, 361, 195–202.

[19]

Pan, B. F.; Huang, J. H.; Feng, Z. X.; Zeng, L.; He, M. N.; Zhang, L.; Vaughey, J. T.; Bedzyk, M. J.; Fenter, P.; Zhang, Z. et al. Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv. Energy Mater. 2016, 6, 1600140.

[20]

Dong, H.; Liang, Y. L.; Tutusaus, O.; Mohtadi, R.; Zhang, Y.; Hao, F.; Yao, Y. Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 2019, 3, 782–793.

[21]

Sun, X. Q.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z. Q.; Persson, K. A.; Ceder, G.; Nazar, L. F. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 2016, 9, 2273–2277.

[22]

Zhou, L. M.; Xiong, F. Y.; Tan, S. S.; An, Q. Y.; Wang, Z. Y.; Yang, W.; Tao, Z. L.; Yao, Y.; Chen, J.; Mai, L. Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy 2018, 54, 360–366.

[23]

Du, A. B.; Zhao, Y. M.; Zhang, Z. H.; Dong, S. M.; Cui, Z. L.; Tang, K.; Lu, C. L.; Han, P. X.; Zhou, X. H.; Cui, G. L. Selenium sulfide cathode with copper foam interlayer for promising magnesium electrochemistry. Energy Storage Mater. 2020, 26, 23–31.

[24]

Cheng, X. Y.; Zhang, Z. H.; Kong, Q. Y.; Zhang, Q. H.; Wang, T.; Dong, S. M.; Gu, L.; Wang, X.; Ma, J.; Han, P. X. et al. Highly reversible cuprous mediated cathode chemistry for magnesium batteries. Angew. Chem., Int. Ed. 2020, 59, 11477–11482.

[25]

Qu, X. L.; Du, A. B.; Wang, T.; Kong, Q. Y.; Chen, G. D.; Zhang, Z. H.; Zhao, J. W.; Liu, X.; Zhou, X. H.; Dong, S. M. et al. Charge-compensation in a displacement Mg2+ storage cathode through polyselenide-mediated anion redox. Angew. Chem., Int. Ed. 2022, 61, e202204423.

[26]

Wang, Z. T.; Rafai, S.; Qiao, C.; Jia, J.; Zhu, Y. Q.; Ma, X. L.; Cao, C. B. Microwave-assisted synthesis of CuS hierarchical nanosheets as the cathode material for high-capacity rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2019, 11, 7046–7054.

[27]

Duffort, V.; Sun, X. Q.; Nazar, L. F. Screening for positive electrodes for magnesium batteries: A protocol for studies at elevated temperatures. Chem. Commun. 2016, 52, 12458–12461.

[28]

Xiong, F. Y.; Fan, Y. Q.; Tan, S. S.; Zhou, L. M.; Xu, Y. N.; Pei, C. Y.; An, Q. Y.; Mai, L. Magnesium storage performance and mechanism of CuS cathode. Nano Energy 2018, 47, 210–216.

[29]

Liang, H. F.; Shi, H. H.; Zhang, D. F.; Ming, F. W.; Wang, R. R.; Zhuo, J. Q.; Wang, Z. C. Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem. Mater. 2016, 28, 5587–5591.

[30]

Kim, H. S.; Arthur, T. S.; Allred, G. D.; Zajicek, J.; Newman, J. G.; Rodnyansky, A. E.; Oliver, A. G.; Boggess, W. C.; Muldoon, J. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2011, 2, 427.

[31]

Zhao-Karger, Z.; Zhao, X. Y.; Wang, D.; Diemant, T.; Behm, R. J.; Fichtner, M. Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 2015, 5, 1401155.

[32]

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Kong, W. H.; Lin, H. N.; Wang, L.; Jin, Z. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage. Adv. Energy Mater. 2019, 9, 1900145.

[33]

Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S. Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem., Int. Ed. 2016, 55, 500–513.

[34]

Ju, Y. M.; Meng, Y.; Wei, Y. J.; Bian, X. F.; Pang, Q.; Gao, Y.; Du, F.; Liu, B. B.; Chen, G. Li+/Mg2+ hybrid-ion batteries with long cycle life and high rate capability employing MoS2 nano flowers as the cathode material. Chem. -Eur. J. 2016, 22, 18073–18079.

[35]

Li, X. G.; Gao, T.; Han, F. D.; Ma, Z. H.; Fan, X. L.; Hou, S.; Eidson, N.; Li, W. S.; Wang, C. S. Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive. Adv. Energy Mater. 2018, 8, 1701728.

[36]

Kang, S. J.; Kim, H.; Hwang, S.; Jo, M.; Jang, M.; Park, C.; Hong, S. T.; Lee, H. Electrolyte additive enabling conditioning-free electrolytes for magnesium batteries. ACS Appl. Mater. Interfaces 2019, 11, 517–524.

[37]

Hebié, S.; Alloin, F.; Iojoiu, C.; Berthelot, R.; Leprêtre, J. C. Magnesium anthracene system-based electrolyte as a promoter of high electrochemical performance rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2018, 10, 5527–5533.

[38]

He, Y. S.; Li, Q.; Yang, L. L.; Yang, C. R.; Xu, D. S. Electrochemical-conditioning-free and water-resistant hybrid AlCl3/MgCl2/Mg(TFSI)2 electrolytes for rechargeable magnesium batteries. Angew. Chem., Int. Ed. 2019, 58, 7615–7619.

[39]

Mao, M. L.; Gao, T.; Hou, S.; Wang, F.; Chen, J.; Wei, Z. X.; Fan, X. L.; Ji, X.; Ma, J. M.; Wang, C. S. High-energy-density rechargeable Mg battery enabled by a displacement reaction. Nano Lett. 2019, 19, 6665–6672.

[40]

Wang, D. H.; Wang, L. F.; Liang, G. J.; Li, H. F.; Liu, Z. X.; Tang, Z. J.; Liang, J. B.; Zhi, C. Y. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 2019, 13, 10643–10652.

[41]

Kravchyk, K. V.; Widmer, R.; Erni, R.; Dubey, R. J. C.; Krumeich, F.; Kovalenko, M. V.; Bodnarchuk, M. I. Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries. Sci. Rep. 2019, 9, 7988.

[42]

Gao, T.; Hou, S.; Wang, F.; Ma, Z. H.; Li, X. G.; Xu, K.; Wang, C. S. Reversible S0/MgSx redox chemistry in a MgTFSI2/MgCl2/DME electrolyte for rechargeable Mg/S batteries. Angew. Chem., Int. Ed. 2017, 56, 13526–13530.

Nano Research
Pages 2399-2408
Cite this article:
Xue X, Song X, Tao A, et al. Boosting the cycling stability of rechargeable magnesium batteries by regulating the compatibility between nanostructural metal sulfide cathodes and non-nucleophilic electrolytes. Nano Research, 2023, 16(2): 2399-2408. https://doi.org/10.1007/s12274-022-4932-z
Topics:

884

Views

19

Crossref

18

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 06 June 2022
Revised: 03 August 2022
Accepted: 19 August 2022
Published: 13 September 2022
© Tsinghua University Press 2022
Return