Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Driven by sub-bandgap electric work and Peltier heat, thermoelectric-driven light-emitting diodes (TED-LEDs) not only offer much enhanced power-conversion-efficiency but also eliminate the waste heat generated during the operation of LEDs. However, cost-effective and high-efficiency TED-LEDs are not readily accessible for the epitaxially grown III-V LEDs due to the high chip cost and efficiency droop at low-medium brightness (current densities). Here we show that electroluminescence of colloidal quantum dots (QDs) LEDs (QLEDs) circumvents the deficiencies faced by conventional LEDs. The optimal red-emitting device fabricated by cost-effective solution processing technics exhibits external- and internal-power-conversion-efficiency of 21.5% and 93.5% at 100 cd/m2, suited for high-efficiency solid-state lighting and high-resolution display. At this brightness, the electric driving voltage (V) of 1.89 V is lower than the photon voltage (Vp = hv/q = 1.96 V, q being the elemental charge). With typical Vp = 1.96 V, electroluminescence can be detected with the driving voltage as low as 1.0–1.2 V. Luminance of the thermoelectric-driven QLEDs (TED-QLEDs) remains ideally diffusion-dominated with the driving voltage lower than ~ 1.5 V, and further improvement on charge transport is expected to extend the linear ideality to all practical driving voltages.
Parbrook, P. J.; Corbett, B.; Han, J. N.; Seong, T. Y.; Amano, H. Micro-light emitting diode: From chips to applications. Laser Photonics Rev. 2021, 15, 2000133.
Kuritzky, L. Y.; Weisbuch, C.; Speck, J. S. Prospects for 100% wall-plug efficient III-nitride LEDs. Opt. Express 2018, 26, 16600–16608.
Kuritzky, L. Y.; Espenlaub, A. C.; Yonkee, B. P.; Pynn, C. D.; DenBaars, S. P.; Nakamura, S.; Weisbuch, C.; Speck, J. S. High wall-plug efficiency blue III-nitride LEDs designed for low current density operation. Opt. Express 2017, 25, 30696–30707.
Karpov, S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review. Opt. Quant. Electron. 2015, 47, 1293–1303.
Xue, J.; Zhao, Y. J.; Oh, S. H.; Herrington, W. F.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.; Ram, R. J. Thermally enhanced blue light-emitting diode. Appl. Phys. Lett. 2015, 107, 121109.
Hurni, C. A.; David, A.; Cich, M. J.; Aldaz, R. I.; Ellis, B.; Huang, K.; Tyagi, A.; DeLille, R. A.; Craven, M. D.; Steranka, F. M. et al. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett. 2015, 106, 031101.
Li, N.; Han, K.; Spratt, W.; Bedell, S.; Ott, J.; Hopstaken, M.; Libsch, F.; Li, Q. L.; Sadana, D. Ultra-low-power sub-photon-voltage high-efficiency light-emitting diodes. Nat. Photonics 2019, 13, 588–592.
Santhanam, P.; Gray, D. J. Jr.; Ram, R. J. Thermoelectrically pumped light-emitting diodes operating above unity efficiency. Phys. Rev. Lett. 2012, 108, 097403.
Santhanam, P.; Huang, D. N.; Ram, R. J.; Remennyi, M. A.; Matveev, B. A. Room temperature thermo-electric pumping in mid-infrared light-emitting diodes. Appl. Phys. Lett. 2013, 103, 183513.
Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.
Chen, D.; Viswanatha, R.; Ong, G. L.; Xie, R. G.; Balasubramaninan, M.; Peng, X. G. Temperature dependence of "elementary processes" in doping semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 9333–9339.
Yuan, Y. C.; Zhu, H.; Wang, X. D.; Cui, D. Z.; Gao, Z. H.; Su, D.; Zhao, J.; Chen, O. Cu-catalyzed synthesis of CdZnSe-CdZnS alloy quantum dots with highly tunable emission. Chem. Mater. 2019, 31, 2635–2643.
Pu, C. D.; Qin, H. Y.; Gao, Y.; Zhou, J. H.; Wang, P.; Peng, X. G. Synthetic control of exciton behavior in colloidal quantum dots. J. Am. Chem. Soc. 2017, 139, 3302–3311.
Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.
Ye, Z. K.; Lin, X.; Wang, N.; Zhou, J. H.; Zhu, M. Y.; Qin, H. Y.; Peng, X. G. Phonon-assisted up-conversion photoluminescence of quantum dots. Nat. Commun. 2021, 12, 4283.
Zhang, S. B.; Zhukovskyi, M.; Janko, B.; Kunó, M. Progress in laser cooling semiconductor nanocrystals and nanostructures. NPG Asia Mater. 2019, 11, 54.
Poles, E.; Selmarten, D. C.; Mićić, O. I.; Nozik, A. J. Anti-Stokes photoluminescence in colloidal semiconductor quantum dots. Appl. Phys. Lett. 1999, 75, 971–973.
Wang, X. Y.; Yu, W. W.; Zhang, J. Y.; Aldana, J.; Peng, X. G.; Xiao, M. Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B 2003, 68, 125318.
Heikkilä, O.; Oksanen, J.; Tulkki, J. Ultimate limit and temperature dependency of light-emitting diode efficiency. J. Appl. Phys. 2009, 105, 093119.
Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J. M.; Kazlas, P. T.; Coe-Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. QLEDs for displays and solid-state lighting. MRS Bull. 2013, 38, 703–711.
Jiang, Y. R.; Cho, S. Y.; Shim, M. Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. J. Mater. Chem. C 2018, 6, 2618–2634.
Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.
Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.
Sullivan, K. G.; Hall, D. G. Enhancement and inhibition of electromagnetic radiation in plane-layered media IPlane-wave spectrum approach to modeling classical effects. J. Opt. Soc. Am. B 1997, 14, 1149.
Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 1998, 15, 962–971.
Zhang, Z. X.; Ye, Y. X.; Pu, C. D.; Deng, Y. Z.; Dai, X. L.; Chen, X. P.; Chen, D.; Zheng, X. R.; Gao, Y.; Fang, W. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 2018, 30, 1801387.
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.
Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.
Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.
Qian, L.; Zheng, Y.; Choudhury, K. R.; Bera, D.; So, F.; Xue, J. G.; Holloway, P. H. Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today 2010, 5, 384–389.
Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.
Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.
Meng, L.; Yao, E. P.; Hong, Z. R.; Chen, H. J.; Sun, P. Y.; Yang, Z. L.; Li, G.; Yang, Y. Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage. Adv. Mater. 2017, 29, 1603826.
David, A.; Hurni, C. A.; Young, N. G.; Craven, M. D. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling. Appl. Phys. Lett. 2016, 109, 083501.
Engmann, S.; Barito, A. J.; Bittle, E. G.; Giebink, N. C.; Richter, L. J.; Gundlach, D. J. Higher order effects in organic LEDs with sub-bandgap turn-on. Nat. Commun. 2019, 10, 227.
Kuik, M.; Wetzelaer, G. J. A. H.; Nicolai, H. T.; Craciun, N. I.; De Leeuw, D. M.; Blom, P. W. M. 25th anniversary article: Charge transport and recombination in polymer light-emitting diodes. Adv. Mater. 2014, 26, 512–531.
Luo, H. X.; Zhang, W. J.; Li, M. L.; Yang, Y. X.; Guo, M. X.; Tsang, S. W.; Chen, S. Origin of subthreshold turn-on in quantum-dot light-emitting diodes. ACS Nano 2019, 13, 8229–8236.
Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.
Sadi, T.; Radevici, I.; Oksanen, J. Thermophotonic cooling with light-emitting diodes. Nat. Photonics 2020, 14, 205–214.
Li, Y. G.; Sachnik, O.; van der Zee, B.; Thakur, K.; Ramanan, C.; Wetzelaer, G. J. A. H.; Blom, P. W. M. Universal electroluminescence at voltages below the energy gap in organic light-emitting diodes. Adv. Opt. Mater. 2021, 9, 2101149.
Fishchuk, I. I.; Kadashchuk, A. K.; Genoe, J.; Ullah, M.; Sitter, H.; Singh, T. B.; Sariciftci, N. S.; Bässler, H. Temperature dependence of the charge carrier mobility in disordered organic semiconductors at large carrier concentrations. Phys. Rev. B 2010, 81, 045202.
Craciun, N. I.; Wildeman, J.; Blom, P. W. M. Universal arrhenius temperature activated charge transport in diodes from disordered organic semiconductors. Phys. Rev. Lett. 2008, 100, 056601.
Lee, H.; Jeong, B. G.; Bae, W. K.; Lee, D. C.; Lim, J. Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nat. Commun. 2021, 12, 5669.
Empedocles, S. A.; Bawendi, M. G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 1997, 278, 2114–2117.
Qiao, X. F.; Ma, D. G. Triplet-triplet annihilation effects in rubrene/C60 OLEDs with electroluminescence turn-on breaking the thermodynamic limit. Nat. Commun. 2019, 10, 4683.
Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.
Hong, K.; Lee, J. L. Review paper: Recent developments in light extraction technologies of organic light emitting diodes. Electron. Mater. Lett. 2011, 7, 77–91.
Nam, S.; Oh, N.; Zhai, Y.; Shim, M. High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. ACS Nano 2015, 9, 878–885.
Dousmanis, G. C.; Mueller, C. W.; Nelson, H.; Petzinger, K. G. Evidence of refrigerating action by means of photon emission in semiconductor diodes. Phys. Rev. 1964, 133, A316–A318.
Mal'shukov, A. G.; Chao, K. A. Opto-thermionic refrigeration in semiconductor heterostructures. Phys. Rev. Lett. 2001, 86, 5570–5573.
Zhou, J. H.; Zhu, M. Y.; Meng, R. Y.; Qin, H. Y.; Peng, X. G. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 2017, 139, 16556–16567.
Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.
Deng, Y. Z.; Lin, X.; Fang, W.; Di, D. W.; Wang, L. J.; Friend, R. H.; Peng, X. G.; Jin, Y. Z. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.