AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots

Xing Lin1,2,§Xingliang Dai1,3,§Zikang Ye1,4,§Yufei Shu1Zixuan Song2Xiaogang Peng1( )
Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
State Key Laboratory of Silicon Materials, Department of Material Science and Engineering, Zhejiang University, Hangzhou 310027, China
College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China

§ Xing Lin, Xingliang Dai, and Zikang Ye contributed equally to this work.

Show Author Information

Graphical Abstract

Efficient thermal-electrical driven light-emitting diodes can be constructed based on solution-processed colloidal quantum dots (QLEDs). The device can achieve its peak internal power conversion efficiency (IPE ~ 90%) and remain high level within the current density range of 0.5–100 mA/cm2 which matches the demand of display and lighting applications. Micro-LEDs based on epitaxially grown quantum well (QW-LEDs) exhibit very limited power conversion efficiency in the same current density range due to leakage current and/or Shockley–Read–Hall (SRH) nonradiative recombination.

Abstract

Driven by sub-bandgap electric work and Peltier heat, thermoelectric-driven light-emitting diodes (TED-LEDs) not only offer much enhanced power-conversion-efficiency but also eliminate the waste heat generated during the operation of LEDs. However, cost-effective and high-efficiency TED-LEDs are not readily accessible for the epitaxially grown III-V LEDs due to the high chip cost and efficiency droop at low-medium brightness (current densities). Here we show that electroluminescence of colloidal quantum dots (QDs) LEDs (QLEDs) circumvents the deficiencies faced by conventional LEDs. The optimal red-emitting device fabricated by cost-effective solution processing technics exhibits external- and internal-power-conversion-efficiency of 21.5% and 93.5% at 100 cd/m2, suited for high-efficiency solid-state lighting and high-resolution display. At this brightness, the electric driving voltage (V) of 1.89 V is lower than the photon voltage (Vp = hv/q = 1.96 V, q being the elemental charge). With typical Vp = 1.96 V, electroluminescence can be detected with the driving voltage as low as 1.0–1.2 V. Luminance of the thermoelectric-driven QLEDs (TED-QLEDs) remains ideally diffusion-dominated with the driving voltage lower than ~ 1.5 V, and further improvement on charge transport is expected to extend the linear ideality to all practical driving voltages.

Electronic Supplementary Material

Download File(s)
12274_2022_4942_MOESM1_ESM.pdf (2.1 MB)

References

1
Schubert, E. F. Light-Emitting Diodes, 3rd ed.; Cambridge University Press: Cambridge, 2018.
2

Parbrook, P. J.; Corbett, B.; Han, J. N.; Seong, T. Y.; Amano, H. Micro-light emitting diode: From chips to applications. Laser Photonics Rev. 2021, 15, 2000133.

3

Kuritzky, L. Y.; Weisbuch, C.; Speck, J. S. Prospects for 100% wall-plug efficient III-nitride LEDs. Opt. Express 2018, 26, 16600–16608.

4

Kuritzky, L. Y.; Espenlaub, A. C.; Yonkee, B. P.; Pynn, C. D.; DenBaars, S. P.; Nakamura, S.; Weisbuch, C.; Speck, J. S. High wall-plug efficiency blue III-nitride LEDs designed for low current density operation. Opt. Express 2017, 25, 30696–30707.

5

Karpov, S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review. Opt. Quant. Electron. 2015, 47, 1293–1303.

6

Xue, J.; Zhao, Y. J.; Oh, S. H.; Herrington, W. F.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.; Ram, R. J. Thermally enhanced blue light-emitting diode. Appl. Phys. Lett. 2015, 107, 121109.

7

Hurni, C. A.; David, A.; Cich, M. J.; Aldaz, R. I.; Ellis, B.; Huang, K.; Tyagi, A.; DeLille, R. A.; Craven, M. D.; Steranka, F. M. et al. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett. 2015, 106, 031101.

8

Li, N.; Han, K.; Spratt, W.; Bedell, S.; Ott, J.; Hopstaken, M.; Libsch, F.; Li, Q. L.; Sadana, D. Ultra-low-power sub-photon-voltage high-efficiency light-emitting diodes. Nat. Photonics 2019, 13, 588–592.

9

Santhanam, P.; Gray, D. J. Jr.; Ram, R. J. Thermoelectrically pumped light-emitting diodes operating above unity efficiency. Phys. Rev. Lett. 2012, 108, 097403.

10

Santhanam, P.; Huang, D. N.; Ram, R. J.; Remennyi, M. A.; Matveev, B. A. Room temperature thermo-electric pumping in mid-infrared light-emitting diodes. Appl. Phys. Lett. 2013, 103, 183513.

11

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

12

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

13

Chen, D.; Viswanatha, R.; Ong, G. L.; Xie, R. G.; Balasubramaninan, M.; Peng, X. G. Temperature dependence of "elementary processes" in doping semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 9333–9339.

14

Yuan, Y. C.; Zhu, H.; Wang, X. D.; Cui, D. Z.; Gao, Z. H.; Su, D.; Zhao, J.; Chen, O. Cu-catalyzed synthesis of CdZnSe-CdZnS alloy quantum dots with highly tunable emission. Chem. Mater. 2019, 31, 2635–2643.

15

Pu, C. D.; Qin, H. Y.; Gao, Y.; Zhou, J. H.; Wang, P.; Peng, X. G. Synthetic control of exciton behavior in colloidal quantum dots. J. Am. Chem. Soc. 2017, 139, 3302–3311.

16

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

17

Ye, Z. K.; Lin, X.; Wang, N.; Zhou, J. H.; Zhu, M. Y.; Qin, H. Y.; Peng, X. G. Phonon-assisted up-conversion photoluminescence of quantum dots. Nat. Commun. 2021, 12, 4283.

18

Zhang, S. B.; Zhukovskyi, M.; Janko, B.; Kunó, M. Progress in laser cooling semiconductor nanocrystals and nanostructures. NPG Asia Mater. 2019, 11, 54.

19

Poles, E.; Selmarten, D. C.; Mićić, O. I.; Nozik, A. J. Anti-Stokes photoluminescence in colloidal semiconductor quantum dots. Appl. Phys. Lett. 1999, 75, 971–973.

20

Wang, X. Y.; Yu, W. W.; Zhang, J. Y.; Aldana, J.; Peng, X. G.; Xiao, M. Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B 2003, 68, 125318.

21

Heikkilä, O.; Oksanen, J.; Tulkki, J. Ultimate limit and temperature dependency of light-emitting diode efficiency. J. Appl. Phys. 2009, 105, 093119.

22

Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J. M.; Kazlas, P. T.; Coe-Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. QLEDs for displays and solid-state lighting. MRS Bull. 2013, 38, 703–711.

23

Jiang, Y. R.; Cho, S. Y.; Shim, M. Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. J. Mater. Chem. C 2018, 6, 2618–2634.

24

Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.

25

Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

26

Sullivan, K. G.; Hall, D. G. Enhancement and inhibition of electromagnetic radiation in plane-layered media IPlane-wave spectrum approach to modeling classical effects. J. Opt. Soc. Am. B 1997, 14, 1149.

27

Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 1998, 15, 962–971.

28

Zhang, Z. X.; Ye, Y. X.; Pu, C. D.; Deng, Y. Z.; Dai, X. L.; Chen, X. P.; Chen, D.; Zheng, X. R.; Gao, Y.; Fang, W. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 2018, 30, 1801387.

29

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

30

Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.

31

Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

32

Qian, L.; Zheng, Y.; Choudhury, K. R.; Bera, D.; So, F.; Xue, J. G.; Holloway, P. H. Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today 2010, 5, 384–389.

33

Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

34

Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

35

Meng, L.; Yao, E. P.; Hong, Z. R.; Chen, H. J.; Sun, P. Y.; Yang, Z. L.; Li, G.; Yang, Y. Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage. Adv. Mater. 2017, 29, 1603826.

36

David, A.; Hurni, C. A.; Young, N. G.; Craven, M. D. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling. Appl. Phys. Lett. 2016, 109, 083501.

37

Engmann, S.; Barito, A. J.; Bittle, E. G.; Giebink, N. C.; Richter, L. J.; Gundlach, D. J. Higher order effects in organic LEDs with sub-bandgap turn-on. Nat. Commun. 2019, 10, 227.

38

Kuik, M.; Wetzelaer, G. J. A. H.; Nicolai, H. T.; Craciun, N. I.; De Leeuw, D. M.; Blom, P. W. M. 25th anniversary article: Charge transport and recombination in polymer light-emitting diodes. Adv. Mater. 2014, 26, 512–531.

39

Luo, H. X.; Zhang, W. J.; Li, M. L.; Yang, Y. X.; Guo, M. X.; Tsang, S. W.; Chen, S. Origin of subthreshold turn-on in quantum-dot light-emitting diodes. ACS Nano 2019, 13, 8229–8236.

40

Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.

41

Sadi, T.; Radevici, I.; Oksanen, J. Thermophotonic cooling with light-emitting diodes. Nat. Photonics 2020, 14, 205–214.

42

Li, Y. G.; Sachnik, O.; van der Zee, B.; Thakur, K.; Ramanan, C.; Wetzelaer, G. J. A. H.; Blom, P. W. M. Universal electroluminescence at voltages below the energy gap in organic light-emitting diodes. Adv. Opt. Mater. 2021, 9, 2101149.

43
Dill, K. A.; Bromberg, S. Molecular driving forces: Statistical thermodynamics in biology, chemistry, physics, and nanoscience, 2nd ed.; Garland Science: New York, 2010.
44

Fishchuk, I. I.; Kadashchuk, A. K.; Genoe, J.; Ullah, M.; Sitter, H.; Singh, T. B.; Sariciftci, N. S.; Bässler, H. Temperature dependence of the charge carrier mobility in disordered organic semiconductors at large carrier concentrations. Phys. Rev. B 2010, 81, 045202.

45

Craciun, N. I.; Wildeman, J.; Blom, P. W. M. Universal arrhenius temperature activated charge transport in diodes from disordered organic semiconductors. Phys. Rev. Lett. 2008, 100, 056601.

46

Lee, H.; Jeong, B. G.; Bae, W. K.; Lee, D. C.; Lim, J. Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nat. Commun. 2021, 12, 5669.

47

Empedocles, S. A.; Bawendi, M. G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 1997, 278, 2114–2117.

48
Meerheim, R.; Walzer, K.; He, G. F.; Pfeiffer, M.; Leo, K. Highly efficient organic light emitting diodes (OLED) for diplays and lighting. In Proceedings Volume 6192, Organic Optoelectronics and Photonics II, Strasbourg, France, 2006.
49

Qiao, X. F.; Ma, D. G. Triplet-triplet annihilation effects in rubrene/C60 OLEDs with electroluminescence turn-on breaking the thermodynamic limit. Nat. Commun. 2019, 10, 4683.

50

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

51

Hong, K.; Lee, J. L. Review paper: Recent developments in light extraction technologies of organic light emitting diodes. Electron. Mater. Lett. 2011, 7, 77–91.

52

Nam, S.; Oh, N.; Zhai, Y.; Shim, M. High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. ACS Nano 2015, 9, 878–885.

53

Dousmanis, G. C.; Mueller, C. W.; Nelson, H.; Petzinger, K. G. Evidence of refrigerating action by means of photon emission in semiconductor diodes. Phys. Rev. 1964, 133, A316–A318.

54

Mal'shukov, A. G.; Chao, K. A. Opto-thermionic refrigeration in semiconductor heterostructures. Phys. Rev. Lett. 2001, 86, 5570–5573.

55

Zhou, J. H.; Zhu, M. Y.; Meng, R. Y.; Qin, H. Y.; Peng, X. G. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 2017, 139, 16556–16567.

56

Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

57

Deng, Y. Z.; Lin, X.; Fang, W.; Di, D. W.; Wang, L. J.; Friend, R. H.; Peng, X. G.; Jin, Y. Z. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.

Nano Research
Pages 9402-9409
Cite this article:
Lin X, Dai X, Ye Z, et al. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots. Nano Research, 2022, 15(10): 9402-9409. https://doi.org/10.1007/s12274-022-4942-x
Topics:

1163

Views

13

Crossref

10

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 17 August 2022
Accepted: 22 August 2022
Published: 26 August 2022
© Tsinghua University Press 2022
Return