AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controllable substitutional vanadium doping in wafer-scale molybdenum disulfide films

Jihyung Seo1,§Eunbin Son1,§Jiha Kim1Sun-Woo Kim2,3Jeong Min Baik2,3( )Hyesung Park1( )
Department of Materials Science and Engineering, Graduate School of Semiconductor Materials and Devices Engineering, Graduate School of Carbon Neutrality, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
SKKU Institute of Energy Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea

§ Jihyung Seo and Eunbin Son contributed equally to this work.

Show Author Information

Graphical Abstract

Controllable substitutional vanadium (V) doping in the MoS2 lattice is successfully achieved by a liquid precursor-mediated chemical vapor deposition process using an alkali metal halide (KI) as the reaction promoter. The reaction promoter significantly improved the lateral growth of MoS2 and the reactivity of the V precursor, resulting that the so-obtained wafer-scale V-MoS2 films have excellent uniformity at high V doping concentrations.

Abstract

Substitutional atomic doping of transition metal dichalcogenides (TMDs) in the chemical vapor deposition (CVD) process is a promising and effective strategy for modifying their physicochemical properties. However, the conventional CVD method only allows narrow-range modulation of the dopant concentration owing to the low reactivity of the precursors. Moreover, the growth of wafer-scale monolayer TMD films with high dopant concentrations is much more challenging. Herein, we report a facile doping approach based on liquid precursor-mediated CVD process for achieving high vanadium (V) doping in the MoS2 lattice with excellent doping uniformity and stability. The lateral growth of the host MoS2 lattice and the reactivity of the V precursor were simultaneously improved by introducing an alkali metal halide as a reaction promoter. The metal halide promoter enabled the wafer-scale synthesis of V-incorporated MoS2 monolayer film with excessively high doping concentrations. The excellent wafer-scale uniformity of the highly V-doped MoS2 film was confirmed through a series of microscopic, spectroscopic, and electrical analyses.

Electronic Supplementary Material

Download File(s)
12274_2022_4945_MOESM1_ESM.pdf (540.4 KB)

References

[1]

Li, S. S.; Hong, J. H.; Gao, B.; Lin, Y. C.; Lim, H. E.; Lu, X. Y.; Wu, J.; Liu, S.; Tateyama, Y.; Sakuma, Y. et al. Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics. Adv. Sci. 2021, 8, 2004438.

[2]

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

[3]

Pham, Y. T. H.; Liu, M. Z.; Jimenez, V. O.; Yu, Z. H.; Kalappattil, V.; Zhang, F.; Wang, K.; Williams, T.; Terrones, M.; Phan, M. H. Tunable ferromagnetism and thermally induced spin flip in vanadium-doped tungsten diselenide monolayers at room temperature. Adv. Mater. 2020, 32, 2003607.

[4]

Zhang, K. H.; Bersch, B. M.; Joshi, J.; Addou, R.; Cormier, C. R.; Zhang, C. X.; Xu, K.; Briggs, N. C.; Wang, K.; Subramanian, S. et al. Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater. 2018, 28, 1706950.

[5]

Pham, V. P.; Yeom, G. Y. Recent advances in doping of molybdenum disulfide: Industrial applications and future prospects. Adv. Mater. 2016, 28, 9024–9059.

[6]

Kim, A. R.; Kim, Y.; Nam, J.; Chung, H. S.; Kim, D. J.; Kwon, J. D.; Park, S. W.; Park, J.; Choi, S. Y.; Lee, B. H. et al. Alloyed 2D metal-semiconductor atomic layer junctions. Nano Lett. 2016, 16, 1890–1895.

[7]

Chua, X. J.; Luxa, J.; Eng, A. Y. S.; Tan, S. M.; Sofer, Z.; Pumera, M. Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction. ACS Catal. 2016, 6, 5724–5734.

[8]

Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 2010, 9, 965–974.

[9]

Yun, S. J.; Duong, D. L.; Ha, D. M.; Singh, K.; Phan, T. L.; Choi, W.; Kim, Y. M.; Lee, Y. H. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 2020, 7, 1903076.

[10]

Yin, X. M.; Tang, C. S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A. T. S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115.

[11]

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

[12]

Seo, J.; Kim, Y.; Lee, J.; Son, E.; Jung, M. H.; Kim, Y. M.; Jeong, H. Y.; Lee, G.; Park, H. A single-atom vanadium-doped 2D semiconductor platform for attomolar-level molecular sensing. J. Mater. Chem. A 2022, 10, 13298–13304.

[13]

Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735–9743.

[14]

Lin, Y. C.; Torsi, R.; Geohegan, D. B.; Robinson, J. A.; Xiao, K. Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci. 2021, 8, 2004249.

[15]

Cai, Z. Y.; Lai, Y. J.; Zhao, S. L.; Zhang, R. J.; Tan, J. Y.; Feng, S. M.; Zou, J. Y.; Tang, L.; Lin, J. H.; Liu, B. L. et al. Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides. Natl. Sci. Rev. 2021, 8, nwaa115.

[16]

Zhang, T. Y.; Fujisawa, K.; Zhang, F.; Liu, M. Z.; Lucking, M. C.; Gontijo, R. N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T. et al. Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis. ACS Nano 2020, 14, 4326–4335.

[17]

Qin, Z. Y.; Loh, L.; Wang, J. Y.; Xu, X. M.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J. Z.; Schultz, T. et al. Growth of Nb-doped monolayer WS2 by liquid-phase precursor mixing. ACS Nano 2019, 13, 10768–10775.

[18]

Kim, M.; Seo, J.; Kim, J.; Moon, J. S.; Lee, J.; Kim, J. H.; Kang, J.; Park, H. High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics. ACS Nano 2021, 15, 3038–3046.

[19]

Zhang, F.; Zheng, B. Y.; Sebastian, A.; Olson, D. H.; Liu, M. Z.; Fujisawa, K.; Pham, Y. T. H.; Jimenez, V. O.; Kalappattil, V.; Miao, L. X. et al. Monolayer vanadium-doped tungsten disulfide: A room-temperature dilute magnetic semiconductor. Adv. Sci. 2020, 7, 2001174.

[20]

Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

[21]

Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

[22]

Zou, J. Y.; Cai, Z. Y.; Lai, Y. J.; Tan, J. Y.; Zhang, R. J.; Feng, S. M.; Wang, G.; Lin, J. H.; Liu, B. L.; Cheng, H. M. Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 2021, 15, 7340–7347.

[23]

Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.

[24]

Wang, Z. Q.; Zhao, G. X.; Luo, R. C.; Johnson, I.; Kashani, H.; Chen, M. W. Chemical doping induced zone-edge phonon renormalization in single-layer MoS2. Phys. Rev. B 2019, 100, 085401.

[25]

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

[26]

Tang, L.; Xu, R. Z.; Tan, J. Y.; Luo, Y. T.; Zou, J. Y.; Zhang, Z. T.; Zhang, R. J.; Zhao, Y.; Lin, J. H.; Zou, X. L. et al. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb-doping. Adv. Funct. Mater. 2021, 31, 2006941.

[27]

Seo, J.; Lee, J.; Jeong, G.; Park, H. Site-selective and van der Waals epitaxial growth of rhenium disulfide on graphene. Small 2019, 15, 1804133.

[28]

Chen, X.; Park, Y. J.; Kang, M.; Kang, S. K.; Koo, J.; Shinde, S. M.; Shin, J.; Jeon, S.; Park, G.; Yan, Y. et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 2018, 9, 1690.

[29]

Roy, T.; Tosun, M.; Kang, J. S.; Sachid, A. B.; Desai, S. B.; Hettick, M.; Hu, C. C.; Javey, A. Field-effect transistors built from all two-dimensional material components. ACS Nano 2014, 8, 6259–6264.

Nano Research
Pages 3415-3421
Cite this article:
Seo J, Son E, Kim J, et al. Controllable substitutional vanadium doping in wafer-scale molybdenum disulfide films. Nano Research, 2023, 16(2): 3415-3421. https://doi.org/10.1007/s12274-022-4945-7
Topics:

830

Views

8

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 19 June 2022
Revised: 08 August 2022
Accepted: 22 August 2022
Published: 30 September 2022
© Tsinghua University Press 2022
Return