Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the oral and maxillofacial region. Due to its unique location, earlier and more accurate diagnosis and more minimally invasive treatment of OSCC is of major importance. Herein, gadolinium-containing semiconductor polymer nanoparticles (SPN-Gd) were designed and prepared. The nanoparticles consist of a near-infrared (NIR) absorption semiconductor polymer (PCPDTBT) served as fluorescence signal source and a photothermal conversion agent (PTA) and a gadolinium-grafted triblock amphiphilic copolymer (F127-DTPA-Gd) served as a magnetic resonance imaging (MRI) contrast agent and nanocarrier. The experiments in vivo showed that SPN-Gd could act as an MRI contrast agent and optical image agent with a long retention time, and it had a significant inhibiting effect on tumors of OSCC mice model through photothermal therapy (PTT). Thus our study provides a simple nanotheranostic platform composed of two components for efficient MR/fluorescence dual-modal imaging-guided PTT.
Chamoli, A.; Gosavi, A. S.; Shirwadkar, U. P.; Wangdale, K. V.; Behera, S. K.; Kurrey, N. K.; Kalia, K.; Mandoli, A. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral Oncol. 2021, 121, 105451.
Ishida, K.; Nakashima, T.; Shibata, T.; Hara, A.; Tomita, H. Role of the DEK oncogene in the development of squamous cell carcinoma. Int. J. Clin. Oncol. 2020, 25, 1563–1569.
Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.
Gao, A. T.; Pan, X.; Yang, X. D.; Lin, Z. T. Predictive factors in the treatment of oral squamous cell carcinoma using PD-1/PD-L1 inhibitors. Invest. New Drugs 2021, 39, 1132–1138.
Han, Z.; Li, Y. J.; Roelle, S.; Zhou, Z. X.; Liu, Y. C.; Sabatelle, R.; DeSanto, A.; Yu, X.; Zhu, H.; Magi-Galluzzi, C. et al. Targeted contrast agent specific to an oncoprotein in tumor microenvironment with the potential for detection and risk stratification of prostate cancer with MRI. Bioconjug. Chem. 2017, 28, 1031–1040.
Kim, H. K.; Lee, G. H.; Chang, Y. M. Gadolinium as an MRI contrast agent. Future Med. Chem. 2018, 10, 639–661.
Morana, G.;Cugini, C.;Scatto, G.;Zanato, R.;Fusaro, M.; Dorigo, A. Use of contrast agents in oncological imaging: magnetic resonance imaging. Cancer Imaging 2013, 13, 350–359.
Shirazi, A. N.; Park, S. E.; Rad, S.; Baloyan, L.; Mandal, D.; Sajid, M. I.; Hall, R.; Lohan, S.; Zoghebi, K.; Parang, K. et al. Cyclic peptide-gadolinium nanoparticles for enhanced intracellular delivery. Pharmaceutics 2020, 12, 792.
Xin, X. Y.; Sha, H. Z.; Shen, J. T.; Zhang, B.; Zhu, B.; Liu, B. R. Coupling Gd-DTPA with a bispecific, recombinant protein anti-EGFR-iRGD complex improves tumor targeting in MRI. Oncol. Rep. 2016, 35, 3227–3235.
Usman, M. S.; Hussein, M. Z.; Fakurazi, S.; Saad, F. F. A. Gadolinium-based layered double hydroxide and graphene oxide nano-carriers for magnetic resonance imaging and drug delivery. Chem. Cent. J. 2017, 11, 47.
Ji, Y. Y.; Jones, C.; Baek, Y.; Park, G. K.; Kashiwagi, S.; Choi, H. S. Near-infrared fluorescence imaging in immunotherapy. Adv. Drug Deliv. Rev. 2020, 167, 121–134.
Pan, X.; Gao, A. T.; Lin, Z. T. Fluorescence imaging of tumor immune contexture in immune checkpoint blockade therapy. Int. Immunopharmacol. 2022, 106, 108617.
Yan, R. Q.; Hu, Y. X.; Liu, F.; Wei, S. X.; Fang, D. Q.; Shuhendler, A. J.; Liu, H.; Chen, H. Y.; Ye, D. J. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly. J. Am. Chem. Soc. 2019, 141, 10331–10341.
Feng, L. H.; Zhu, C. L.; Yuan, H. X.; Liu, L. B.; Lv, F. T.; Wang, S. Conjugated polymernanoparticles: Preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 2013, 42, 6620–6633.
Zhou, W.; Chen, Y.; Zhang, Y. T.; Xin, X. Y.; Li, R. T.; Xie, C.; Fan, Q. L. Iodine-rich semiconducting polymer nanoparticles for CT/fluorescence dual-modal imaging-guided enhanced photodynamic therapy. Small 2020, 16, 1905641.
Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687–4735.
Zhen, X.; Xie, C.; Pu, K. Y. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew. Chem., Int. Ed. 2018, 57, 3938–3942.
Hu, J. J.; Cheng, Y. J.; Zhang, X. Z. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale 2018, 10, 22657–22672.
Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F. R.; Frey, H. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: Synthesis, novel polymer architectures, and bioconjugation. Chem. Rev. 2016, 116, 2170–2243.
Naruphontjirakul, P.; Viravaidya-Pasuwat, K. Development of anti-HER2-targeted doxorubicin-core–shell chitosan nanoparticles for the treatment of human breast cancer. Int. J. Nanomed. 2019, 14, 4105–4121.
Vu-Quang, H.; Vinding, M. S.; Nielsen, T.; Ullisch, M. G.; Nielsen, N. C.; Nguyen, D. T.; Kjems, J. Pluronic F127-folate coated super paramagenic iron oxide nanoparticles as contrast agent for cancer diagnosis in magnetic resonance imaging. Polymers 2019, 11, 743.
Xiao, Y. D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z. S.; Zhou, S. K. MRI contrast agents: Classification and application (review). Int. J. Mol. Med. 2016, 38, 1319–1326.
Chaabane, L.; Tei, L.; Miragoli, L.; Lattuada, L.; von Wronski, M.; Uggeri, F.; Lorusso, V.; Aime, S. In vivo MR imaging of fibrin in a neuroblastoma tumor model by means of a targeting Gd-containing peptide. Mol. Imaging Biol. 2015, 17, 819–828.
Abelha, T. F.; Neumann, P. R.; Holthof, J.; Dreiss, C. A.; Alexander, C.; Green, M.; Dailey, L. A. Low molecular weight PEG-PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance. J. Mater. Chem. B 2019, 7, 5115–5124.
Yoon, J.; Kwag, J.; Shin, T. J.; Park, J.; Lee, Y. M.; Lee, Y.; Park, J.; Heo, J.; Joo, C.; Park, T. J. et al. Nanoparticles of conjugated polymers prepared from phase-separated films of phospholipids and polymers for biomedical applications. Adv. Mater. 2014, 26, 4559–4564.
Wu, C. F.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J. Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2008, 2, 2415–2423.
Wang, Y. F.; Meng, H. M.; Li, Z. H. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. Nanoscale 2021, 13, 8751–8772.
Park, S. J.; Ye, W. D.; Xiao, R.; Silvin, C.; Padget, M.; Hodge, J. W.; van Waes, C.; Schmitt, N. C. Cisplatin and oxaliplatin induce similar immunogenic changes in preclinical models of head and neck cancer. Oral Oncol. 2019, 95, 127–135.
Gupta, G.; Borglum, K.; Chen, H. X. Immunogenic cell death: A step ahead of autophagy in cancer therapy. J. Cancer Immunol. (Wilmington) 2021, 3, 47–59.
Sweeney, E. E.; Cano-Mejia, J.; Fernandes, R. Photothermal therapy generates a thermal window of immunogenic cell death in neuroblastoma. Small 2018, 14, 1800678.
Yu, Y. J.; Li, J.; Song, B. Y.; Ma, Z.; Zhang, Y. F.; Sun, H. N.; Wei, X. S.; Bai, Y. Y.; Lu, X. G.; Zhang, P. et al. Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Biomaterials 2022, 280, 121312.
Ruan, H. T.; Bu, L. L.; Hu, Q. Y.; Cheng, H.; Lu, W. Y.; Gu, Z. Strategies of combination drug delivery for immune checkpoint blockades. Adv. Healthc. Mater. 2019, 8, 1801099.
Aoto, K.; Mimura, K.; Okayama, H.; Saito, M.; Chida, S.; Noda, M.; Nakajima, T.; Saito, K.; Abe, N.; Ohki, S. et al. Immunogenic tumor cell death induced by chemotherapy in patients with breast cancer and esophageal squamous cell carcinoma. Oncol. Rep. 2018, 39, 151–159.
Fabian, K. P.; Wolfson, B.; Hodge, J. W. From immunogenic cell death to immunogenic modulation: Select chemotherapy regimens induce a spectrum of immune-enhancing activities in the tumor microenvironment. Front. Oncol. 2021, 11, 728018.
Xie, Q.; Li, Z.; Liu, Y.; Zhang, D. W.; Su, M.; Niitsu, H.; Lu, Y. Y.; Coffey, R. J.; Bai, M. F. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater. 2021, 134, 716–729.
Ruan, H.; Leibowitz, B. J.; Zhang, L.; Yu, J. Immunogenic cell death in colon cancer prevention and therapy. Mol. Carcinog. 2020, 59, 783–793.
Heshmati Aghda, N.; Abdulsahib, S. M.; Severson, C.; Lara, E. J.; Torres Hurtado, S.; Yildiz, T.; Castillo, J. A.; Tunnell, J. W.; Betancourt, T. Induction of immunogenic cell death of cancer cells through nanoparticle-mediated dual chemotherapy and photothermal therapy. Int. J. Pharm. 2020, 589, 119787.
Sistigu, A.; Yamazaki, T.; Vacchelli, E.; Chaba, K.; Enot, D. P.; Adam, J.; Vitale, I.; Goubar, A.; Baracco, E. E.; Remédios, C. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 2014, 20, 1301–1309.