AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low-dimensional cobalt doped carbon composite towards wideband electromagnetic dissipation

Xiaodi Zhou1,2Biao Zhao1( )Hualiang Lv2( )
School of Microelectronics, Fudan University, Shanghai 200433, China
Willian G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
Show Author Information

Graphical Abstract

A novel N-doped carbon matrix decorated with Zn and Co elements derived from bi-metal ZIFs has been synthesized. The as-prepared composite exhibits an improved electromagnetic (EM) dissipation capability under a reduced coating thickness due to the strong dipole polarization behavior.

Abstract

Composites composed of a carbon matrix decorated with a metal or metal oxide derived from zeolitic imidazolate frameworks (ZIFs) have been widely applied as suitable electromagnetic wave absorbers due to their high porosity and controllable morphology. However, achieving ideal absorption performance remains a challenge owing to the inadequate conductivity and high density of the metal components. Therefore, a temperature-controlling treatment was employed for the bimetal ZIFs, and the corresponding derivatives exhibited an excellent dissipation ability with a minimum reflection loss value of −54.3 dB and an effective bandwidth of 7.0 GHz at a thickness of 2.4 mm, which resulted from the strong dipole polarization behavior. Furthermore, after successfully controlling the Zn/Co ratio, the attenuation capability was greatly enhanced at a thickness of 1.4 mm, with bandwidths of 13.0–18.0 GHz. Overall, this work provides an ameliorated strategy for microwave absorption performance of carbon-based materials.

References

[1]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic–dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[2]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew Chem., Int. Ed. 2022, 61, e202200705.

[3]

Lv, H. L.; Yang, Z. H.; Liu B.; Wu, G. L.; Lou, Z. C.; Fei, B.; Wu, R. B. A flexible electromagnetic wave-electricity harvester. Nat. Commun. 2021, 12, 834.

[4]

Qiu, Y.; Yang, H. B.; Hu, F. F.; Lin, Y. Two-dimensional CoNi@mesoporous carbon composite with heterogeneous structure toward broadband microwave absorber. Nano Res. 2022, 15, 7769–7777.

[5]

Lou, Z. C.; Wang, Q. Y.; Kara, U. I.; Mamtani, R. S.; Zhou, X. D.; Bian, H. Y.; Yang, Z. H.; Li, Y. J.; Lv, H. L.; Adera, S. et al. Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 2022, 14, 11.

[6]

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

[7]

Qiu, Y.; Yang, H. B.; Cheng, Y.; Lin, Y. MOFs derived flower-like nickel and carbon composites with controllable structure toward efficient microwave absorption. Compos. Part A: Appl. Sci. Manuf. 2022, 154, 106772.

[8]

Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

[9]

Zhao, B.; Li, Y.; Zeng, Q. W.; Wang, L.; Ding, J. J.; Zhang, R.; Che, R. C. Galvanic replacement reaction involving core–shell magnetic chains and orientation-tunable microwave absorption properties. Small 2020, 16, 2003502.

[10]

Sui, M. X.; Sun, X. D.; Lou, H. F.; Li, X. P.; Lv, X. L.; Li, L.; Gu, G. X. Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: Effect of reactant concentration, reaction temperature and reaction time. J. Mater. Sci. Mater. Electron. 2018, 29, 7539–7550.

[11]

Shen, J. Y.; Zhang, D. F.; Wu, Q. B.; Wang, Y.; Gao, H.; Yu, J. L.; Zeng, G. X.; Zhang, H. Y. Pyrolysis-controlled FeCoNi@hard carbon composites with facilitated impedance matching for strong electromagnetic wave response. J. Mater. Chem. C 2021, 9, 13447–13459.

[12]

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

[13]

Zhao, H.; Yun, J.; Zhang, Y. L.; Ruan, K. P.; Huang, Y. S.; Zheng, Y. P.; Chen, L. X.; Gu, J. W. Pressure-induced self-interlocked structures for expanded graphite composite papers achieving prominent EMI shielding effectiveness and outstanding thermal conductivities. ACS Appl. Mater. Interfaces 2022, 14, 3233–3243.

[14]

Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153.

[15]

Chen, C.; Xi, J. B.; Zhou, E. Z.; Peng, L.; Chen, Z. C.; Gao, C. Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 2018, 10, 26.

[16]

Wang, H. Q. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

[17]

Yao, M. S.; Xiu, J. W.; Huang, Q. Q.; Li, W. H.; Wu, W. W.; Wu, A. Q.; Cao, L. A.; Deng, W. H.; Wang, G. E.; Xu, G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angew. Chem. 2019, 131, 15057–15061.

[18]

Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

[19]

Lei, Z. W.; Shen, J. L.; Zhang, W. D.; Wang, Q. R.; Wang, J.; Deng, Y. H.; Wang, C. Y. Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly (ethyleneoxide)-based solid polymer electrolytes. Nano Res. 2020, 13, 2259–2267.

[20]

Zhang, W.; Jiang, X. F.; Wang, X. B.; Kaneti, Y. V.; Chen, Y. X.; Liu, J.; Jiang, J. S.; Yamauchi, Y.; Hu, M. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem., Int. Ed. 2017, 56, 8435–8440.

[21]

Li, X. H.; Wang, L.; You, W. B.; Li, X.; Yang, L. T.; Zhang, J.; Wang, M.; Che, R. C. Enhanced microwave absorption performance from abundant polarization sites of ZnO nanocrystals embedded in CNTs via confined space synthesis. Nanoscale 2019, 11, 22539–22549.

[22]

Chen, H.; Hong, R.; Liu, Q. C.; Li, S. K.; Huang, F. Z.; Lu, Y.; Wang, L.; Li, K. Z.; Zhang, H. CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J. Alloys Compd. 2018, 752, 115–122.

[23]

Feng, W.; Wang, Y. M.; Zou, Y. C.; Chen, J. C.; Jia, D. C.; Zhou, Y. ZnO@N-doped porous carbon/Co3ZnC core–shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 2018, 342, 364–371.

[24]

Lee, Y. R.; Jang, M. S.; Cho, H. Y.; Kwon, H. J.; Kim, S.; Ahn, W. S. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 2015, 271, 276–280.

[25]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[26]

Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

[27]

Li, X. Y.; Gao, X. Y.; Ai, L. H.; Jiang, J. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 2015, 274, 238–246.

[28]

Guo, J.; Gadipelli, S.; Yang, Y. C.; Li, Z. N.; Lu, Y.; Brett, D. J. L.; Guo, Z. X. An efficient carbon-based ORR catalyst from low-temperature etching of ZIF-67 with ultra-small cobalt nanoparticles and high yield. J. Mater. Chem. A 2019, 7, 3544–3551.

[29]

Cui, B. Y.; Wu, G. M.; Qiu, S. J.; Zou, Y. J.; Yan, E. H.; Xu, F.; Sun, L. X.; Chu, H. L. Ruthenium supported on cobalt-embedded porous carbon with hollow structure as efficient catalysts toward ammonia-borane hydrolysis for hydrogen production. Adv. Sustainable Syst. 2021, 5, 2100209.

[30]

Zhang, Z. Y.; Tan, Y. Y.; Zeng, T.; Yu, L. Y.; Chen, R. Z.; Cheng, N. C.; Mu, S. C.; Sun, X. L. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res. 2021, 14, 2353–2362.

[31]

Zhang, Y. T.; Wang, P.; Yang, J.; Lu, S. S.; Li, K. K.; Liu, G. Y.; Duan, Y. F.; Qiu, J. S. Decorating ZIF-67-derived cobalt-nitrogen doped carbon nanocapsules on 3D carbon frameworks for efficient oxygen reduction and oxygen evolution. Carbon 2021, 177, 344–356.

[32]

Yang, S. J.; Kim, T.; Im, J. H.; Kim, Y. S.; Lee, K.; Jung, H.; Park, C. R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 2012, 24, 464–470.

[33]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[34]

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem. 2019, 131, 3549–3553.

[35]

Jin, H. H.; Zhou, H.; Ji, P. X.; Zhang, C. T.; Luo, J. H.; Zeng, W. H.; Hu, C. X.; He, D. P.; Mu, S. C. ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res. 2020, 13, 818–823.

[36]

Li, X. M.; Qiao, Y. Q.; Wang, C. H.; Shen, T. D.; Zhang, X. Y.; Wang, H. C.; Li, Y. S.; Gao, W. M. MOF-derived Co/C nanocomposites encapsulated by Ni(OH)2 ultrathin nanosheets shell for high performance supercapacitors. J. Alloys Compd. 2019, 770, 803–812.

[37]

Lv, H. L.; Yang, Z. H.; Ong, S. J. H.; Wei, C.; Liao, H. B.; Xi, S. B.; Du, Y. H.; Ji, G. B.; Xu, Z. J. A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 2019, 29, 1900163.

[38]

Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600.

[39]

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

[40]

Sun, X. P.; Sun, S. X.; Gu, S. Q.; Liang, Z. F.; Zhang, J. X.; Yang, Y. Q.; Deng, Z.; Wei, P.; Peng, J.; Xu, Y. et al. High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy 2019, 61, 245–250.

[41]

Ning, M. Q.; Man, Q. K.; Tan, G. G.; Lei, Z. K.; Li, J. B.; Li, R. W. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 20785–20796.

[42]

Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

[43]

Peng, K. S.; Liu, C. Y.; Wu, Y. H.; Fang, G.; Xu, G. Y.; Zhang, Y. J.; Wu, C.; Yan, M. Understanding the efficient microwave absorption for FeCo@ZnO flakes at elevated temperatures a combined experimental and theoretical approach. J. Mater. Sci. Technol. 2022, 125, 212–221.

[44]

Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Fan, B. B.; Shao, G.; Bai, Z. Y.; Zhang, R. Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 2017, 10, 331–343.

[45]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

[46]

Zhang, X. Y.; Jia, Z. R.; Zhang, F.; Xia, Z. H.; Zou, J. X.; Gu, Z.; Wu, G. L. MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber. J. Colloid Interface Sci. 2022, 610, 610–620.

[47]

Lv, H. L.; Yang, Z. H.; Xu, H. B.; Wang, L. Y.; Wu, R. B. An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 2020, 30, 1907251.

[48]

Zhang, Y. L.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. W. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280.

[49]

Ning, M. Q.; Lei, Z. K.; Tan, G. G.; Man, Q. K.; Li, J. B.; Li, R. W. Dumbbell-like Fe3O4@N-doped carbon@2H/1T-MoS2 with tailored magnetic and dielectric loss for efficient microwave absorbing. ACS Appl. Mater. Interfaces 2021, 13, 47061–47071.

[50]

Liu, Y.; Liu, X. H.; E, X. Y.; Wang, B. B.; Jia, Z. R.; Chi, Q. G.; Wu, G. L. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol. 2022, 103, 157–164.

[51]

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Xie, Y. J.; Zhang, R. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 2015, 3, 10345–10352.

[52]

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

[53]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[54]

Zhang, J. J.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 2022, 128, 59–70.

[55]

Fang, G.; Liu, C. Y.; Yang, Y.; Peng, K. S.; Cao, Y. F.; Jiang, T.; Zhang, Y. T.; Zhang, Y. J. Regulating percolation threshold via dual conductive phases for high-efficiency microwave absorption performance in C and X bands. ACS Appl. Mater. Interfaces 2021, 13, 37517–37526.

[56]

Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

[57]

Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

[58]

Sun, C. H.; Jia, Z. R.; Xu, S.; Hu, D. Q.; Zhang, C. H.; Wu, G. L. Synergistic regulation of dielectric–magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 113, 128–137.

[59]

Wen, C. Y.; Li, X.; Zhang, R. X.; Xu, C. Y.; You, W. B.; Liu, Z. W.; Zhao, B.; Che, R. C. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 2022, 16, 1150–1159.

[60]

Zhou, X. D.; Han, H.; Wang, Y. C.; Zhang, C.; Lv, H. L.; Lou, Z. C. Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 121, 199–206.

[61]

Zhou, Y.; Deng, X.; Xing, H. N.; Zhao, H. Y.; Liu, Y. B.; Guo, L. S.; Feng, J.; Feng, W.; Zong, Y.; Zhu, X. H. et al. Dynamically observing the formation of MOFs-driven Co/N-doped carbon nanocomposites by in-situ transmission electron microscope and their application as high-efficient microwave absorbent. Nano Res. 2022, 15, 6819–6830.

Nano Research
Pages 70-79
Cite this article:
Zhou X, Zhao B, Lv H. Low-dimensional cobalt doped carbon composite towards wideband electromagnetic dissipation. Nano Research, 2023, 16(1): 70-79. https://doi.org/10.1007/s12274-022-4950-x
Topics:
Part of a topical collection:

855

Views

25

Crossref

35

Web of Science

30

Scopus

3

CSCD

Altmetrics

Received: 18 July 2022
Revised: 17 August 2022
Accepted: 23 August 2022
Published: 22 September 2022
© Tsinghua University Press 2022
Return