AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Control of crystal growth to obtain needle-shaped violet phosphorus with excellent photocatalytic degradation performance

Mengting JinYanhao WangMengyue GuXuewen ZhaoRongzheng ZhaoYuhao ZhangYonghong ChengJinying Zhang( )
School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

The layered violet phosphorus has been controlled to grow along the c-axis to yield needle-shaped ones with tunable length, yielding an excellent photocatalytic activity. About 98.6% of methyl orange pollutants with high concentration were degraded within 80 min under the irradiation of visible light, much higher than that of amorphous phosphorus (14.1%).

Abstract

The control of crystal growth is important but challenging for multi-disciplinary research. Violet phosphorus, the most stable phosphorus allotrope, has recently been produced as a unique semiconducting layered structure. The crystal orientation and morphology bring extra performance due to its unique structure and anisotropy. Herein, the layered violet phosphorus has been controlled to grow along the c-axis to give tunable length up to centimeters with the assistance of tin, while the reported flat bulk ones with thickness are limited to micrometers. The as-produced needle-shaped violet phosphorus has also been demonstrated to significantly enhance the photocatalytic degradation of methyl orange pollutants due to its special crystallographic orientation. About 98.6% of methyl orange pollutants with a concentration of 50 ppm were degraded within 80 min under visible light conditions by needle-shaped violet phosphorus, which is much more effective than that of amorphous red phosphorus with only 14.1% degradation.

Electronic Supplementary Material

Download File(s)
12274_2022_4952_MOESM1_ESM.pdf (1.8 MB)
12274_2022_4952_MOESM2_ESM.pdf (1.1 MB)

References

[1]

Jin, M.; Yang, W. H.; Wang, X. H.; Li, R. B.; Xu, Y. D.; Xu, J. Y. Growth and characterization of ZnTe single crystal via a novel Te flux vertical Bridgman method. Rare Met. 2021, 40, 858–864.

[2]

Yu, P. F.; Jiang, B. R.; Chen, Y. R.; Lu, H. Y.; Qi, Y. W.; Liu, Y. P.; Ma, Z. F.; Zheng, J. H.; Luan, L. J.; Jie, W. Q. Growth and characterization of inclusion-free CdMgTe single crystals using modified Bridgman method. J. Mater. Sci. Mater. Electron. 2020, 31, 10207–10212.

[3]

Ning, S. Y.; Yang, X. Y.; Wang, Y.; Zhu, Z. W.; Zhang, J. X. Single crystal growth of GdB6 by the optical floating-zone technique. CrystEngComm 2020, 22, 8236–8242.

[4]

Fu, B.; Mu, W. X.; Zhang, J.; Wang, X. Q.; Zhuang, W. C.; Yin, Y. R.; Jia, Z. T.; Tao, X. T. A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method. CrystEngComm 2020, 22, 5060–5066.

[5]

Yin, Y. R.; Wang, G. J.; Jia, Z. T.; Mu, W. X.; Fu, X. W.; Zhang, J.; Tao, X. T. Controllable and directional growth of Er: Lu2O3 single crystals by the edge-defined film-fed technique. CrystEngComm 2020, 22, 6569–6573.

[6]

Li, H.; Liu, J. K.; Guo, N.; Xiao, L.; Zhang, H. X.; Zhou, S. Y.; Wu, Y.; Fan, S. S. Seeded growth of high-quality transition metal dichalcogenide single crystals via chemical vapor transport. CrystEngComm 2020, 22, 8017–8022.

[7]

Sutter, E.; Wang, J.; Sutter, P. Surface passivation by excess sulfur for controlled synthesis of large, thin SnS flakes. Chem. Mater. 2020, 32, 8034–8042.

[8]

Wang, G. D.; Zhang, L.; Wang, Y.; Shao, Y. L.; Chen, C. M.; Liu, G. X.; Yao, X. G.; Wu, Y. Z.; Hao, X. P. Growth and stress analysis of spontaneous nucleation c-plane bulk AlN crystals by a PVT method. Cryst. Res. Technol. 2020, 55, 2000118.

[9]

Wu, Z.; Liu, G. L.; Wang, Y. X.; Yang, X.; Wei, T. Q.; Wang, Q. J.; Liang, J.; Xu, N.; Li, Z. Z.; Zhu, B. et al. Seed-induced vertical growth of 2D Bi2O2Se nanoplates by chemical vapor transport. Adv. Funct. Mater. 2019, 29, 1906639.

[10]

Quinson, J.; Bottein, T.; Dillon, F.; Meysami, S. S.; Grobert, N. Carbon nanotube columns for flow systems: Influence of synthesis parameters. Nanoscale Adv. 2020, 2, 5874–5882.

[11]

Zhang, S.; Ma, S. F.; Hao, X. D.; Wang, Y. T.; Cao, B.; Han, B.; Zhang, H.; Kong, X. G.; Xu, B. S. Controllable preparation of crystalline red phosphorus and its photocatalytic properties. Nanoscale 2021, 13, 18955–18960.

[12]

Zhang, L. H.; Gu, M. Y.; Li, L. R.; Zhao, X. W.; Fu, C. C.; Liu, T.; Xu, X. Q.; Cheng, Y. H.; Zhang, J. Y. High yield synthesis of violet phosphorus crystals. Chem. Mater. 2020, 32, 7363–7369.

[13]

Zhang, B.; Wang, Z. Y.; Huang, H. Y.; Zhang, L. H.; Gu, M. Y.; Cheng, Y. H.; Wu, K.; Zhou, J.; Zhang, J. Y. Work function and band alignment of few-layer violet phosphorene. J. Mater. Chem. A 2020, 8, 8586–8592.

[14]

Zhao, R. Z.; Liu, S. H.; Zhao, X. W.; Gu, M. Y.; Zhang, Y. H.; Jin, M. T.; Wang, Y. H.; Cheng, Y. H.; Zhang, J. Y. Violet phosphorus quantum dots. J. Mater. Chem. A 2021, 10, 245–250.

[15]

Zhang, B.; Zhang, L. H.; Wang, Z. X.; Li, Y. F.; Cheng, Y. H.; Ma, L. F.; Zhang, J. Y. Cross structured two-dimensional violet phosphorene with extremely high deformation resistance. J. Mater. Chem. A 2021, 9, 13855–13860.

[16]

Zhang, L. H.; Huang, H. Y.; Zhang, B.; Gu, M. Y.; Zhao, D.; Zhao, X. W.; Li, L. R.; Zhou, J.; Wu, K.; Cheng, Y. H. et al. Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem., Int. Ed. 2020, 59, 1074–1080.

[17]

Zhang, L. H.; Li, X. B.; Yao, F. F.; Li, L. R.; Huang, H. Y.; Zhao, X. W.; Liu, S. H.; Cheng, Y. H.; Xu, H.; Zhang, J. Y. Fast identification of the crystallographic orientation of violet phosphorus nanoflakes with preferred in-plane cleavage edge orientation. Adv. Funct. Mater. 2022, 32, 2111057.

[18]

Zhang, L. H.; Huang, H. Y.; Lv, Z. X.; Li, L. R.; Gu, M. Y.; Zhao, X. W.; Zhang, B.; Cheng, Y. H.; Zhang, J. Y. Phonon properties of bulk violet phosphorus single crystals: Temperature and pressure evolution. ACS Appl. Electron. Mater. 2021, 3, 1043–1049.

[19]

Zhang, B.; Zhang, L. H.; Chen, C. X.; Gu, M. Y.; Cheng, Y. H.; Zhang, J. Y. Friction anisotropy of violet phosphorene and its surface structure direction identification. 2D Mater. 2022, 9, 025002.

[20]

Zhu, Y. K.; Lv, C. X.; Yin, Z. C.; Ren, J.; Yang, X. F.; Dong, C. L.; Liu, H. W.; Cai, R. S.; Huang, Y. C.; Theis, W. et al. A [001]-oriented Hittorf’s phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew. Chem., Int. Ed. 2020, 59, 868–873.

[21]

Liu, Y.; Hu, Z. F.; Yu, J. C. Liquid bismuth initiated growth of phosphorus microbelts with efficient charge polarization for photocatalysis. Appl. Catal. B: Environ. 2019, 247, 100–106.

[22]

Wang, F.; Ng, W. K. H.; Yu, J. C.; Zhu, H. J.; Li, C. H.; Zhang, L.; Liu, Z. F.; Li, Q. Red phosphorus: An elemental photocatalyst for hydrogen formation from water. Appl. Catal. B: Environ. 2012, 111–112, 409–414.

[23]

Thurn, H.; Krebs, H. Crystal structure of violet phosphorus. Angew. Chem., Int. Ed. 1966, 5, 1047–1048.

[24]

Kim, S.; Hill, D. J.; Pinion, C. W.; Christesen, J. D.; McBride, J. R.; Cahoon, J. F. Designing morphology in epitaxial silicon nanowires: The role of gold, surface chemistry, and phosphorus doping. ACS Nano. 2017, 11, 4453–4462.

[25]

Singh, S.; Kansal, S. K. Recent progress in red phosphorus-based photocatalysts for photocatalytic water remediation and hydrogen production. Appl. Mater. Today 2022, 26, 101345.

[26]

Lin, S. H.; Lai, W. K.; Li, Y. Y.; Lu, W.; Bai, G. X.; Lau, S. P. Liquid-phase exfoliation of violet phosphorus for electronic applications. Smart Mat 2021, 2, 226–233.

[27]

Ricciardulli, A. G.; Wang, Y.; Yang, S.; Samorì, P. Two-dimensional violet phosphorus: A p-type semiconductor for (opto)electronics. J. Am. Chem. Soc. 2022, 144, 3660–3666.

[28]

Li, X. B.; Kang, B. B.; Dong, F.; Zhang, Z. Q.; Luo, X. D.; Han, L.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Xu, J. L. et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671.

[29]

Li, X.; Xia, T.; Xu, C. H.; Murowchick, J.; Chen, X. B. Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts. Catal. Today 2014, 225, 64–73.

[30]

Fung, C. M.; Er, C. C.; Tan, L. L.; Mohamed, A. R.; Chai, S. P. Red phosphorus: An up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation. Chem. Rev. 2022, 122, 3879–3965.

[31]

Hockin, B. M.; Li, C. F.; Robertson, N.; Zysman-Colman, E. Photoredox catalysts based on earth-abundant metal complexes. Catal. Sci. Technol. 2019, 9, 889–915.

[32]

Yang, X. F.; Cui, H. Y.; Li, Y.; Qin, J. L.; Zhang, R. X.; Tang, H. Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catal. 2013, 3, 363–369.

[33]

Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

[34]

Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

[35]

Ansari, S. A.; Ansari, M. S.; Cho, M. H. Metal free earth abundant elemental red phosphorus: A new class of visible light photocatalyst and photoelectrode materials. Phys. Chem. Chem. Phys. 2016, 18, 3921–3928.

[36]

Shen, Z. R.; Hu, Z. F.; Wang, W. J.; Lee, S. F.; Chan, D. K. L.; Li, Y. C.; Gu, T.; Jimmy, C. Y. Crystalline phosphorus fibers: Controllable synthesis and visible-light-driven photocatalytic activity. Nanoscale 2014, 6, 14163–14167.

[37]

Ansari, S. A.; Cho, M. H. Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications. Sci. Rep. 2016, 6, 25405.

[38]

Ansari, S. A.; Ansari, M. O.; Cho, M. H. Facile and scale up synthesis of red phosphorus-graphitic carbon nitride heterostructures for energy and environment applications. Sci. Rep. 2016, 6, 27713.

[39]

Liu, E. Z.; Du, Y. Y.; Bai, X.; Fan, J.; Hu, X. Y. Synergistic improvement of Cr(VI) reduction and RhB degradation using RP/g-C3N4 photocatalyst under visible light irradiation. Arab. J. Chem. 2020, 13, 3836–3848.

Nano Research
Pages 3320-3325
Cite this article:
Jin M, Wang Y, Gu M, et al. Control of crystal growth to obtain needle-shaped violet phosphorus with excellent photocatalytic degradation performance. Nano Research, 2023, 16(2): 3320-3325. https://doi.org/10.1007/s12274-022-4952-8
Topics:

835

Views

5

Crossref

6

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 02 June 2022
Revised: 16 August 2022
Accepted: 24 August 2022
Published: 30 September 2022
© Tsinghua University Press 2022
Return