Graphical Abstract

Transition metal selenides have aroused great attention in recent years due to their high theoretical capacity. However, the huge volume fluctuation generated by conversion reaction during the charge/discharge process results in the significant electrochemical performance reduction. Herein, the carbon-regulated copper(I) selenide (Cu2Se@C) is designed to significantly promote the interface stability and ion diffusion for selenide electrodes. The systematic X-ray spectroscopies characterizations and density functional theory (DFT) simulations reveal that the Cu–Se–C bonding forming on the surface of Cu2Se not only improves the electronic conductivity of Cu2Se@C but also retards the volume change during electrochemical cycling, playing a pivotal role in interface regulation. Consequently, the storage kinetics of Cu2Se@C is mainly controlled by the capacitance process diverting from the ion diffusion-controlled process of Cu2Se. When employed this distinctive Cu2Se@C as anode active material in Li coin cell configuration, the ultrahigh specific capacity of 810.3 mA·h·g−1 at 0.1 A·g−1 and the capacity retention of 83% after 1,500 cycles at 5 A·g−1 is achieved, implying the best Cu-based Li+-storage capacity reported so far. This strategy of heterojunction combined with chemical bonding regulation opens up a potential way for the development of advanced electrodes for battery storage systems.
Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
Huang, Y.; Fang, Y. J.; Lu, X. F.; Luan, D. Y.; Lou, X. W. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angew. Chem., Int. Ed. 2020, 59, 19914–19918.
Wang, Q. S.; Meng, T.; Li, Y. H.; Yang, J. D.; Huang, B. B.; Ou, S. Q.; Meng, C. G.; Zhang, S. Q.; Tong, Y. X. Consecutive chemical bonds reconstructing surface structure of silicon anode for high-performance lithium-ion battery. Energy Stor. Mater. 2021, 39, 354–364.
Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.
Zhang, J.; Liu, Y. C.; Liu, H.; Song, Y. Z.; Sun, S. D.; Li, Q.; Xing, X. R.; Chen, J. Urchin-like Fe3Se4 hierarchitectures: A novel pseudocapacitive sodium-ion storage anode with prominent rate and cycling properties. Small 2020, 16, 2000504.
Xiao, Y. H.; Zhao, X. B.; Wang, X. Z.; Su, D. C.; Bai, S.; Chen, W.; Fang, S. M.; Zhou, L. M.; Cheng, H. M.; Li, F. A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage. Adv. Energy Mater. 2020, 10, 2000666.
Yue, L. C.; Wang, D.; Wu, Z. G.; Zhao, W. X.; Ren, Y. C.; Zhang, L. C.; Zhong, B. H.; Li, N.; Tang, B.; Liu, Q. et al. Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode. Chem. Eng. J. 2022, 433, 134477.
Yuan, H. C.; Wang, N.; NuLi, Y.; Yang, J.; Wang, J. L. Hybrid Mg2+/Li+ batteries with Cu2Se cathode based on displacement reaction. Electrochim. Acta 2018, 261, 503–512.
Jiang, J. L.; Li, H.; Fu, T.; Hwang, B. J.; Li, X.; Zhao, J. B. One-dimensional Cu2−xSe nanorods as the cathode material for high-performance aluminum-ion battery. ACS Appl. Mater. Interfaces 2018, 10, 17942–17949.
Ye, H.; Yin, Y. X.; Zhang, S. F.; Guo, Y. G. Advanced Se-C nanocomposites: A bifunctional electrode material for both Li-Se and Li-ion batteries. J. Mater. Chem. A 2014, 2, 13293–13298.
Wang, K. X.; Li, X. H.; Chen, J. S. Surface and interface engineering of electrode materials for lithium-ion batteries. Adv. Mater. 2015, 27, 527–545.
Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, 1905679.
Xiao, S. H.; Li, Z. Z.; Liu, J. T.; Song, Y. S.; Li, T. S.; Xiang, Y.; Chen, J. S.; Yan, Q. Y. Se–C bonding promoting fast and durable Na+ storage in yolk–shell SnSe2@Se-C. Small 2020, 16, 2002486.
Zhang, Y. K.; Lin, Y. X.; Jiang, H. L.; Wu, C. Q.; Liu, H. J.; Wang, C. D.; Chen, S. M.; Duan, T.; Song, L. Well-defined cobalt catalyst with N-doped carbon layers enwrapping: The correlation between surface atomic structure and electrocatalytic property. Small 2018, 14, 1702074.
Xiao, J. Y.; Liu, H. D.; Huang, J. M.; Lu, Y.; Zhang, L. Decahedron Cu1.8Se/C nano-composites derived from metal–organic framework Cu-BTC as anode materials for high performance lithium-ion batteries. Appl. Surf. Sci. 2020, 526, 146746.
Jin, R. C.; Meng, M.; Zhang, S. H.; Yang, L. X.; Li, G. H. CNTs@C@Cu2−xSe hybrid materials: An advanced electrode for high performance lithium batteries and supercapacitors. Energy Technol. 2018, 6, 2179–2187.
Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 2015, 87, 1051–1069.
Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.
Jin, R. C.; Liu, X. G.; Yang, L. X.; Li, G. H.; Gao, S. M. Sandwich-like Cu2−xSe@C@MoSe2 nanosheets as an improved-performance anode for lithium-ion battery. Electrochim. Acta 2018, 259, 841–849.
Zhao, X.; Cai, W.; Yang, Y.; Song, X. D.; Neale, Z.; Wang, H. E.; Sui, J. H.; Cao, G. Z. MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 2018, 47, 224–234.
Scimeca, M. R.; Yang, F.; Zaia, E.; Chen, N.; Zhao, P.; Gordon, M. P.; Forster, J. D.; Liu, Y. S.; Guo, J. H.; Urban, J. J. et al. Rapid stoichiometry control in Cu2Se thin films for room-temperature power factor improvement. ACS Appl. Energy Mater. 2019, 2, 1517–1525.
Jiang, H. L.; He, Q.; Wang, C. D.; Liu, H. J.; Zhang, Y. K.; Lin, Y. X.; Zheng, X. S.; Chen, S. M.; Ajayan, P. M.; Song, L. Definitive structural identification toward molecule-type sites within 1D and 2D carbon-based catalysts. Adv. Energy Mater. 2018, 8, 1800436.
Kuznetsova, A.; Popova, I.; Yates, J. T. Jr.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies.
Xiang, T.; Tao, S.; Xu, W. Y.; Fang, Q.; Wu, C. Q.; Liu, D. B.; Zhou, Y.; Khalil, A.; Muhammad, Z.; Chu, W. S. et al. Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: Binder-free and high-performance Li-ion anode. ACS Nano 2017, 11, 6483–6491.
Lu, C. X.; Li, A. R.; Li, G. Z.; Yan, Y.; Zhang, M. Y.; Yang, Q. L.; Zhou, W.; Guo, L. S-decorated porous Ti3C2 MXene combined with
Cheng, D. L.; Yang, L. C.; Hu, R. Z.; Liu, J. W.; Che, R. C.; Cui, J.; Wu, Y. N.; Chen, W. Y.; Huang, J. L.; Zhu, M. et al. Sn–C and Se–C Co-bonding SnSe/Few-layered graphene micro-nano structure: Route to a densely compacted and durable anode for lithium/sodium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 36685–36696.
Yang, K. W.; Zhang, X. X.; Song, K. M.; Zhang, J. Y.; Liu, C. T.; Mi, L. W.; Wang, Y. Y.; Chen, W. H. Se–C bond and reversible SEI in facile synthesized SnSe2⊂3D carbon induced stable anode for sodium-ion batteries. Electrochim. Acta 2020, 337, 135783.
He, Q.; Yu, B.; Li, Z. H.; Zhao, Y. Density functional theory for battery materials. Energy Environ. Mater. 2019, 2, 264–279.
Cao, D. F.; Moses, O. A.; Sheng, B. B.; Chen, S. M.; Pan, H. B.; Wu, L. H.; Shou, H. W.; Xu, W. J.; Li, D. D.; Zheng, L. R. et al. Anomalous self-optimization of sulfate ions for boosted oxygen evolution reaction. Sci. Bull. 2021, 66, 553–561.
Liu, Q.; Li, X. L.; Xiao, Z. R.; Zhou, Y.; Chen, H. P.; Khalil, A.; Xiang, T.; Xu, J. Q.; Chu, W. S.; Wu, X. J. et al. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: The correlation between structure and electrical/optical properties. Adv. Mater. 2015, 27, 4837–4844.
Yue, H. L.; Tian, Q.; Wang, G. M.; Jin, R. C.; Wang, Q. Y.; Gao, S. M. Construction of Sb2Se3 nanocrystals on Cu2−xSe@C nanosheets for high performance lithium storage. New J. Chem. 2019, 43, 14066–14073.
Li, H.; Jiang, J. L.; Wang, F.; Huang, J. X.; Wang, Y. H.; Zhang, Y. Y.; Zhao, J. B. Facile synthesis of rod-like Cu2−xSe and insight into its improved lithium-storage property. ChemSusChem 2017, 10, 2235–2241.
Li, J. B.; Yan, D.; Lu, T.; Yao, Y. F.; Pan, L. K. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 2017, 325, 14–24.
Zeng, L. X.; Fang, Y. X.; Xu, L. H.; Zheng, C.; Yang, M. Q.; He, J. F.; Xue, H.; Qian, Q. R.; Wei, M. D.; Chen, Q. H. Rational design of few-layer MoSe2 confined within ZnSe-C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. Nanoscale 2019, 11, 6766–6775.
Yu, L. T.; Qin, L. S.; Xu, X. J.; Kim, K.; Liu, J.; Kang, J.; Ho Kim, K. SnSex (x = 1 and 2) nanoparticles encapsulated in carbon nanospheres with reversible electrochemical behaviors for lithium-ion half/full cells. Chem. Eng. J. 2022, 431, 133463.
Ma, D. J.; Zhu, Q. L.; Li, X. T.; Gao, H. C.; Wang, X. F.; Kang, X. W.; Tian, Y. Unraveling the impact of ether and carbonate electrolytes on the solid-electrolyte interface and the electrochemical performances of ZnSe@C core–shell composites as anodes of lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 8009–8017.
Liu, Q.; Hou, J. G.; Hao, Q.; Huang, P.; Xu, C. X.; Zhou, Q. X.; Zhou, J.; Liu, H. Nitrogen-doped carbon encapsulated hollow ZnSe/CoSe2 nanospheres as high performance anodes for lithium-ion batteries. Nanoscale 2020, 12, 22778–22786.
Lu, S. Y.; Wu, H.; Xu, S. Y.; Wang, Y. K.; Zhao, J. Y.; Li, Y. H.; Abdelkader, A. M.; Li, J.; Wang, W.; Xi, K. et al. Iron selenide microcapsules as universal conversion-typed anodes for alkali metal-ion batteries. Small 2021, 17, 2005745.
Wei, S. Q.; Wang, C. D.; Chen, S. M.; Zhang, P. J.; Zhu, K. F.; Wu, C. Q.; Song, P.; Wen, W.; Song, L. Dial the mechanism switch of VN from conversion to intercalation toward long cycling sodium-ion battery. Adv. Energy Mater. 2020, 10, 1903712.
Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y. Y.; Qiu, M. D.; Xu, J. Z.; Liu, Y. C.; Jiao, L. F.; Cheng, F. Y. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018, 3, 1366–1372.
Wei, S. Q.; Chen, S. M.; Su, X. Z.; Qi, Z. H.; Wang, C. D.; Ganguli, B. B.; Zhang, P. J.; Zhu, K. F.; Cao, Y. Y.; He, Q. et al. Manganese buffer induced high-performance disordered MnVO cathodes in zinc batteries. Energy Environ. Sci. 2021, 14, 3954–3964.
Ressler, T. WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-windows. J. Synchrotron Rad. 1998, 5, 118–122.
Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.
Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.