AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low-voltage and high-gain WSe2 avalanche phototransistor with an out-of-plane WSe2/WS2 heterojunction

Lingyao Meng§Ningning Zhang§Maolong YangXixi YuanMaliang LiuHuiyong Hu( )Liming Wang( )
Department of Microelectronics, Xidian University, Xi’an 710000, China

§ Lingyao Meng and Ningning Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

WSe2 avalanche phototransistor with an out-of-plane WSe2/WS2 heterojunction can significantly reduce the avalanche breakdown voltage and achieve efficient photodetection with low energy consumption.

Abstract

The properties of photodetectors based on two-dimensional materials can be significantly enhanced by avalanche effect. However, a high avalanche breakdown voltage is needed to reach impact ionization, which leads to high power consumption. Here, we report the unique features of a low-voltage avalanche phototransistor formed by an in-plane WSe2 field effect transistor (FET) with an out-of-plane WSe2/WS2 P–N heterojunction (HJ FET). The avalanche breakdown voltage in the device can be decreased from −31 to −8.5 V when compared with that in WSe2 FET. The inherent mechanism is mainly related to the redistributed electric field in the WSe2 channel after the formation of the out-of-plane P–N heterojunction. When the bias voltage is −16.5 V, the photoresponsivity in the HJ FET is enhanced from 1.5 to 135 A/W, which is significantly higher than that in the WSe2 FET because of the obvious reduction of the avalanche breakdown voltage. Moreover, HJ FET shows a higher responsivity than WSe2 FET in the range of 400–1,100 nm under low bias voltage. This phenomenon is caused by accelerating electron–hole spatial separation in the heterojunction. These results indicate that the use of an WSe2 FET with an out-of-plane WSe2/WS2 heterojunction is ideal for high-performance photodetectors with low power consumption.

References

[1]

Shin, G. H.; Park, C.; Lee, K. J.; Jin, H. J.; Choi, S. Y. Ultrasensitive phototransistor based on WSe2−MoS2 van der Waals heterojunction. Nano Lett. 2020, 20, 5741–5748.

[2]

Tan, C. Y.; Wang, H. H.; Zhu, X. D.; Gao, W. S.; Li, H.; Chen, J. W.; Li, G.; Chen, L. J.; Xu, J. M.; Hu, X. Z. et al. A self-powered photovoltaic photodetector based on a lateral WSe2–WSe2 homojunction. ACS Appl. Mater. Interfaces 2020, 12, 44934–44942.

[3]

Tsai, T. H.; Sahoo, A. K.; Syu, H. K.; Wu, Y. C.; Tsai, M. Y.; Siao, M. D.; Yang, Y. C.; Lin, Y. F.; Liu, R. S.; Chiu, P. W. WS2/WSe2 nanodot composite photodetectors for fast and sensitive light detection. ACS Appl. Electron. Mater. 2021, 3, 4291–4299.

[4]

Zhou, C. J.; Zhang, S. Y.; Lv, Z.; Ma, Z. C.; Yu, C.; Feng, Z. H.; Chan, M. S. Self-driven WSe2 photodetectors enabled with asymmetrical van der Waals contact interfaces. npj 2D Mater. Appl. 2020, 4, 46.

[5]

Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222.

[6]

Xu, H.; Yang, Y. F.; Tan, J. J.; Chen, L.; Zhu, H.; Sun, Q. Q. High-performance lateral avalanche photodiode based on silicon-on-insulator structure. IEEE Electron Device Lett. 2022, 43, 1077–1080.

[7]

Li, G.; Zhang, H. L.; Li, Y.; Yin, S. Q.; Kan, X. C.; Wei, W. S.; Du, H. F.; Ge, B. H.; An, C.; Tian, M. L. et al. Ultra-broadband, fast, and polarization-sensitive photoresponse of low-symmetry 2D NdSb2. Nano Res. 2022, 15, 5469–5475.

[8]

Tan, C. Y.; Yin, S. Q.; Chen, J. W.; Lu, Y.; Wei, W. S.; Du, H. F.; Liu, K. L.; Wang, F. K.; Zhai, T. Y.; Li, L. Broken-gap PtS2/WSe2 van der Waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano 2021, 15, 8328–8337.

[9]

Kim, J.; Cho, K.; Pak, J.; Lee, W.; Seo, J.; Kim, J. K.; Shin, J.; Jang, J.; Baek, K. Y.; Lee, J. et al. Channel-length-modulated avalanche multiplication in ambipolar WSe2 field-effect transistors. ACS Nano 2022, 16, 5376–5383.

[10]

Pak, J.; Jang, Y.; Byun, J.; Cho, K.; Kim, T. Y.; Kim, J. K.; Choi, B. Y.; Shin, J.; Hong, Y.; Chung, S. et al. Two-dimensional thickness-dependent avalanche breakdown phenomena in MoS2 field-effect transistors under high electric fields. ACS Nano 2018, 12, 7109–7116.

[11]

Seo, J.; Lee, J. H.; Pak, J.; Cho, K.; Kim, J. K.; Kim, J.; Jang, J.; Ahn, H.; Lim, S. C.; Chung, S. et al. Ultrasensitive photodetection in MoS2 avalanche phototransistors. Adv. Sci. 2021, 8, 2102437.

[12]

Dastgeer, G.; Khan, M. F.; Nazir, G.; Afzal, A. M.; Aftab, S.; Naqvi, B. A.; Cha, J.; Min, K. A.; Jamil, Y.; Jung, J. et al. Temperature-dependent and gate-tunable rectification in a black phosphorus/WS2 van der Waals heterojunction diode. ACS Appl. Mater. Interfaces 2018, 10, 13150–13157.

[13]

Lan, C. Y.; Li, C.; Wang, S.; He, T. Y.; Jiao, T. P.; Wei, D. P.; Jing, W. K.; Li, L. Y.; Liu, Y. Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl. Mater. Interfaces 2016, 8, 18375–18382.

[14]

Roy, T.; Tosun, M.; Cao, X.; Fang, H.; Lien, D. H.; Zhao, P. D.; Chen, Y. Z.; Chueh, Y. L.; Guo, J.; Javey, A. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 2015, 9, 2071–2079.

[15]

Nourbakhsh, A.; Zubair, A.; Dresselhaus, M. S.; Palacios, T. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 2016, 16, 1359–1366.

[16]

Jeon, H. B.; Shin, G. H.; Lee, K. J.; Choi, S. Y. Vertical-tunneling field-effect transistor based on WSe2–MoS2 heterostructure with ion gel dielectric. Adv. Electron. Mater. 2020, 6, 2000091.

[17]

Huo, N. J.; Tongay, S.; Guo, W. L.; Li, R. X.; Fan, C.; Lu, F. Y.; Yang, J. H.; Li, B.; Li, Y. T.; Wei, Z. M. Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p–n heterostructures. Adv. Electron. Mater. 2015, 1, 1400066.

[18]

Roy, T.; Tosun, M.; Hettick, M.; Ahn, G. H.; Hu, C. M.; Javey, A. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Appl. Phys. Lett. 2016, 108, 083111.

[19]

Lee, D.; Choi, Y.; Kim, J.; Kim, J. Recessed-channel WSe2 field-effect transistor via self-terminated doping and layer-by-layer etching. ACS Nano 2022, 16, 8484–8492.

[20]

Pudasaini, P. R.; Oyedele, A.; Zhang, C.; Stanford, M. G.; Cross, N.; Wong, A. T.; Hoffman, A. N.; Xiao, K.; Duscher, G.; Mandrus, D. G. et al. High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Res. 2018, 11, 722–730.

[21]

Xiao, J. W.; Zhang, Y.; Chen, H. J.; Xu, N. S.; Deng, S. Z. Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Lett. 2018, 10, 60.

[22]

Lee, C. H.; Park, Y.; Youn, S.; Yeom, M. J.; Kum, H. S.; Chang, J.; Heo, J.; Yoo, G. Design of p-WSe2/n-Ge heterojunctions for high-speed broadband photodetectors. Adv. Funct. Mater. 2022, 32, 2107992.

[23]

Hwang, W. S.; Remskar, M.; Yan, R. S.; Protasenko, V.; Tahy, K.; Chae, S. D.; Zhao, P.; Konar, A.; Xing, H.; Seabaugh, A. et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 2012, 101, 013107.

[24]

Yang, Y. B.; Huang, L.; Xiao, Y.; Li, Y. T.; Zhao, Y.; Luo, D. X.; Tao, L. L.; Zhang, M. L.; Feng, T. T.; Zheng, Z. Q. et al. Tunable polarity behavior and high-performance photosensitive characteristics in Schottky-barrier field-effect transistors based on multilayer WS2. ACS Appl. Mater. Interfaces 2018, 10, 2745–2751.

[25]
Pang, C. S.; Wu, P.; Appenzeller, J.; Chen, Z. H. Sub-1nm EOT WS2-FET with IDS > 600 μA/μm at VDS = 1 V and SS < 70 mV/dec at LG = 40 nm. In Proceedings of 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2020, pp 3.4. 1–3.4. 4.
[26]

Siao, M. D.; Gandhi, A. C.; Sahoo, A. K.; Wu, Y. C.; Syu, H. K.; Tsai, M. Y.; Tsai, T. H.; Yang, Y. C.; Lin, Y. F.; Liu, R. S. et al. WSe2/WS2 heterobilayer nonvolatile memory device with boosted charge retention. ACS Appli. Mater. Interfaces 2022, 14, 3467–3474.

[27]

Jia, J. Y.; Jeon, J.; Park, J. H.; Lee, B. H.; Hwang, E.; Lee, S. Avalanche carrier multiplication in multilayer black phosphorus and avalanche photodetector. Small 2019, 15, 1805352.

[28]

Meng, L. Y.; Zhang, J. M.; Yuan, X. X.; Yang, M. L.; Wang, B.; Wang, L. M.; Zhang, N. N.; Liu, M. L.; Zhu, Z. M.; Hu, H. Y. Gate voltage dependence ultrahigh sensitivity WS2 avalanche field-effect transistor. IEEE Trans. Electron Devices 2022, 69, 3225–3229.

[29]

Huo, N. J.; Kang, J.; Wei, Z. M.; Li, S. S.; Li, J. B.; Wei, S. H. Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025–7031.

[30]

Wang, H. Y.; Li, Z. X.; Li, D. Y.; Xu, X.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Junction field-effect transistors based on PdSe2/MoS2 heterostructures for photodetectors showing high responsivity and detectivity. Adv. Funct. Mater. 2021, 31, 2106105.

[31]

Shin, H. G.; Yoon, H. S.; Kim, J. S.; Kim, M.; Lim, J. Y.; Yu, S.; Park, J. H.; Yi, Y.; Kim, T.; Jun, S. C. et al. Vertical and in-plane current devices using NbS2/n-MoS2 van der Waals Schottky junction and graphene contact. Nano Lett. 2018, 18, 1937–1945.

[32]

Muto, H.; Kitabayashi, H.; Nakanishi, K.; Wake, S.; Nakajima, M. Numerical analysis of tunneling current due to electric field concentration at gate edge of polysilicon/SiO2/silicon structures. Jpn. J. Appl. Phys. 1994, 33, 623–629.

[33]

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

[34]

Lee, D.; Lee, J. J.; Kim, Y. S.; Kim, Y. H.; Kim, J. C.; Huh, W.; Lee, J.; Park, S.; Jeong, H. Y.; Kim, Y. D. et al. Remote modulation doping in van der Waals heterostructure transistors. Nat. Electron. 2021, 4, 664–670.

[35]

Ulstrup, S.; Koch, R. J.; Schwarz, D.; McCreary, K. M.; Jonker, B. T.; Singh, S.; Bostwick, A.; Rotenberg, E.; Jozwiak, C.; Katoch, J. Imaging microscopic electronic contrasts at the interface of single-layer WS2 with oxide and boron nitride substrates. Appl. Phys. Lett. 2019, 114, 151601.

[36]
Colinge, J. P.; Colinge, C. A. Physics of Semiconductor Devices; Springer: New York, 2005.
[37]

Sharma, P. R.; Gautam, P.; Afzal, A. M.; Park, B.; Noh, H. A comparative study of electrical and opto-electrical properties of a few-layer p-WSe2/n-WS2 heterojunction diode on SiO2 and h-BN substrates. RSC Adv. 2021, 11, 17901–17909.

[38]

Groenendijk, D. J.; Buscema, M.; Steele, G. A.; de Vasconcellos, S. M.; Bratschitsch, R.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 2014, 14, 5846–5852.

[39]

Sun, M. X.; Xie, D.; Sun, Y. L.; Li, W. W.; Ren, T. L. Locally hydrazine doped WSe2 p-n junction toward high-performance photodetectors. Nanotechnology 2018, 29, 015203.

[40]

Xie, Y.; Wu, E. X.; Hu, R. X.; Qian, S. B.; Feng, Z. H.; Chen, X. J.; Zhang, H.; Xu, L. Y.; Hu, X. D.; Liu, J. et al. Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment. Nanoscale 2018, 10, 12436–12444.

[41]

Deng, W. J.; Chen, X. Q.; Li, Y. F.; You, C. Y.; Chu, F. H.; Li, S. Y.; An, B. X.; Ma, Y.; Liao, L.; Zhang, Y. Z. Strain effect enhanced ultrasensitive MoS2 nanoscroll avalanche photodetector. J. Phys. Chem. Lett. 2020, 11, 4490–4497.

[42]

Sangwan, V. K.; Kang, J.; Lam, D.; Gish, J. T.; Wells, S. A.; Luxa, J.; Male, J. P.; Snyder, G. J.; Sofer, Z.; Hersam, M. C. Intrinsic carrier multiplication in layered Bi2O2Se avalanche photodiodes with gain bandwidth product exceeding 1 GHz. Nano Res. 2021, 14, 1961–1966.

Nano Research
Pages 3422-3428
Cite this article:
Meng L, Zhang N, Yang M, et al. Low-voltage and high-gain WSe2 avalanche phototransistor with an out-of-plane WSe2/WS2 heterojunction. Nano Research, 2023, 16(2): 3422-3428. https://doi.org/10.1007/s12274-022-4954-6
Topics:

1212

Views

10

Crossref

10

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 24 June 2022
Revised: 29 July 2022
Accepted: 24 August 2022
Published: 20 October 2022
© Tsinghua University Press 2022
Return